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Modern data-driven algorithms

Promising performance in dozens of safety-critical applications.

Vulnerable to small discrepancies between training and test populations:

Adversarial training is an effective technique to improve robustness

Adversarial training degrades the model accuracy on benign test inputs
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Classic supervised learning setup

Data {zi = (xi, yi)}i=1:n
iid∼ Pz(Z) on metric space Z and norm d(., .)

Parametric loss `(θ; z = (x, y)).

Assess model θ performance:
Standard Risk: SR(θ)=Ez=(x,y)∼Pz [`(θ; z)]
Expected loss on a new test data point from training population Pz

Model performance when there is a distributional shift⇒ Adversarial Risk
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Adversarial setup: distributional shift

Game between learner and adversary

Learner:

Access to data generated iid
from Pz

Pick model θ ( with empircal
risk minimization, etc.)

Adversary:

Access to the training
distribution Pz and model θ

Pick distribution of test data
from an ε-neighborhood of Pz

Popular choice for an ε-neighborhood of Pz is Wasserstein ball: Uε(Pz).
Adversarial risk: AR(θ) = sup

Q∈Uε(Pz)
Ez=(x,y)∼Q[`(θ; z)]
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Main results

Fundamental question:
With unlimited number of training points and computational power:
Is there a model which is optimal in both standard and adversarial risks?

Is there a fundamental tradeoff between standard and adversarial risks?

Main results:

For three classes of statistical learning problems, indeed a tradeoff
between standard and adversarial risk is manifested:
i) Linear regression
ii) Binary classification under a Gaussian mixtures model
ii) The problem of learning an unknown function over a high-dimensional
sphere using random features model

Characterize such tradeoffs + effect of a variety of factors on them:
problem dimension, adversary’s power, complexity of the model class (e.g

number of neurons)
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Pareto-optimal curve: characterization
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Standard risk

(!"(θ), #"(θ))

θ̂λ = arg min
θ
{λSR(θ) + AR(θ)}

Pareto optimal front:
{(

SR(θ̂λ),AR(θ̂λ)
)
, λ ≥ 0

}
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Adversarial risk: characterization
Adversarial Risk: AR(θ) = sup

Q∈Uε(PZ)
Ez=(x,y)∼Q[`(θ; z)]

(Wasserstein ball) Uε(P ) = {Q :W (Q,P ) ≤ ε} ,

(Wasserstein distance) W (Q,P ) = inf
π∈Cpl(Q,P )

(
E(z1,z2)∼π [d

2(z1, z2)]
)1/2

,

(Metric on data points) d(z, z′) = ||x− x′||`r +∞ · I{y 6=y′}

Adversarial Risk dual problem:

min
γ≥0

{
γε2 + EPz

[
Φγ(θ; z)︸ ︷︷ ︸

robust surrogate for `(θ;z)

]}

Robust surrogate:

Φγ(θ; z0) = sup
z∈Z

{
`(θ; z)− γ · d2(z, z0)

}
Strong duality holds for Polish space Z.
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Pareto-optimal tradeoff: linear regression

y = xTθ0 + N(0, 1) , x ∼ N(0,Σd), Σij = ρ|i−j|

(square loss) `(θ; (x, y)) = (y − xTθ)2
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Pareto-optimal tradeoff: binary classification

y ∈ {+1,−1}, x ∼ N (yµ,Σd) , Σij = ρ|i−j|

(linear classifiers) `(θ; (x, y)) = I{yxTθ ≤ 0}
(metric on samples) d(z, z′) = ||x− x||`r +∞ · I{y 6= y′}
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Pareto-optimal tradeoff: learning non-linear functions

x ∼ Unif
(
Sd−1(

√
d)
)
,

f(x) = β0 + βT
1 x+

β2

d

(
xTGx− tr(G)

)
︸ ︷︷ ︸
quadratic with G

iid∼N(0,1)

+N(0, σ2)

(random features model)
{
f(x, θ, U) = θT σ(Ux), U ∈ RN×d, θ ∈ RN

}
, rows of U

iid∼ Sd−1(1)
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