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Rethinking Disentanglement Learning
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Traditional disentangled representation.

We view each embedded sample as a point.
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However, we can also view it as space translation.
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However, we can also view it as space translation.
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However, we can also view it as space translation.
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However, we can also view it as space translation.
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However, we can also view it as space translation.

Equivariance

Image variation -« > Latent space translation
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Equivariance

lmage variation < > Latent spaceEcransIationJ

Why translation?

Other transformations are possible.
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Suppose we encode an image as a state of the latent space.
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Suppose we encode an image as a state of the latent space.

The different image changes now correspond to different

latent transformations.
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Suppose we encode an image as a state of the latent space.

The different image changes now correspond to different
latent transformations.
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Semantic 1 = g4: rotating transformation.

Semantic 2 = g,: scaling transformation.



Rethinking Disentanglement Learning
A brief comparison:

_ Semantic 1 = g4: dim-1 translation.
Old fashion: _ . .
Semantic 2 = g,: dim-2 translation.

_ Semantic 1 = g,: rotating transformation.
New fashion:

Semantic 2 = g,: scaling transformation.

OK, but why do we need the new fashion?



Rethinking Disentanglement Learning

These translations are fixed and predefined.

. (. N
Semantic 1 = g4:dim-1 translation.

A brief comparison:

Old fashion:

Semantic 2 = g,1dim-2 translation.
- J

4 )

_ Semantic 1 = g, {rotating transformation.
New fashion:

Semantic 2 = g, 1scaling transformation.
\ .

These transformations can be learned adaptively!




Rethinking Disentanglement Learning

Hypothesis:

The target equivariance can be more easily learned if an adaptive transformation
structure is used to capture the semantic variations than a fixed structure.
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Adaptive structure



Rethinking Disentanglement Learning

In this work, we use a learnable group structure to achieve this goal.

And in this work, we only consider continuous matrix groups.



An Impression on Group A group element
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The group element g € G maps a vector space to itself: R - R?.



An Impression on Group A group element
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Now the group element g € G maps a group structure to itself: ¢ — G.



Method Group elements
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We assume there is a canonical sample x,, and every other sample is transformed from the canonical one:
g1 °0(x) = (g1° Go-x) © 7(Xo);
g2 ° 0(x) = (g2° Go-x) © 0(xp).

4
Semantic change 1 |

d(x) = gooyx © 0(xp), and:



Method: (1) Group representation

We assume there is a canonical sample x,, and every other sample is transformed from the canonical one:

_ o g1 °0(x) = (91° Go-x) °r0(xo)j
O'(x) = Yo-x [O-(X())] d: g © O'(.X') — (gzo go_)x) OLG(XO)J

It’s the group g € G that defines the representation structure
(relation between samples).

The canonical embedding a(x,) can be seen as a constant.

We propose to set a(x,) to be a fixed value: the group identity element (e).

0(x) = gosx ©0(Xg) = Goox ° € = Goosx»

Now the samples are embedded on a group structure.
We name this embedding as the ‘group representation’.



Method: (1) Group representation
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..looks cool, but how to disentangle a(x) = gg_?



Method: (1) Group representation

Expectation:

0(X) = gox = gll(x) ° gzl(x) e © gn}(x) °©€
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We expect every embedding to be decomposed into subgroup actions.

When a new semantic change comes:

gz 00(x) =gz °Ggosx = g1(x) 0 (gz 0 g2(x)) .ogm(x)oe



Method: (1) Group representation

Expectation:
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In this case, disentanglement on the group representation is achieved
via subgroup decomposition.

...looks cool, but how to learn this decomposable group representation?



Method: (2) Lie Algebra Parameterization

0(x) = o
This representation is on a group structure.
At lease we need a way to obtain elements on a group!

In this work, we focus on Lie group and adopt Lie algebra parameterization:

g(t) = exp(A(t)),g € G,AE g,
A(t) = 1A, + tyAz + o+ tmAm, Vt; ER,A; € R*4,

N~4

Basis Coordinates



Method: (2) Lie Algebra Parameterization

0(x) = o
This representation is on a group structure.
At lease we need a way to obtain elements on a group!

In this work, we focus on Lie group and adopt Lie algebra parameterization:

g(t) = exp(A(t)),g € G,AE g,
A(t) = tjA; + t, Ay + -+ t, A, VE; € R A; € RY*E,

Now, a group G is defined through a vector space A.



Method: (2) Lie Algebra Parameterization

Since the Lie algebra is a vector space, we can now use general
optimization methods (e.g. SGD, Adam) to learn a group structure!

We view the basis {A;};~, as learnable weights in a deep model as it
determines the structure of the group.



Method: (2) Lie Algebra Parameterization

In this work, we enforce a straightforward group decomposition,
namely ‘one-parameter subgroup decomposition’:

g(t)
= exp(t{4; + t,A, + -+t ,A,,)
= exp(t;4,) exp(t;4;) ...exp(tmAm)
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Unfortunately, this decomposition doesn’t hold in general.



Method: (3) Disentangle via Decomposition

A proposition is proposed to enforce this decomposition:

Proposition 1. If A;A; = A;A;, V4, ], then

exp(t1A1 + t2A2 + thm)
= exp(t1A1)exp(taAsz)...exp(tmAm)

= H €Xp(tiA7;).

perm (%)

Proof. See Appendix 1.

We can see this group decomposition is commutative, and it is where
the ‘commutative’ in the title comes from.



Method: (3) Disentangle via Decomposition

Furthermore, we also consider another disentanglement constraint
called Hessian Penalty (Peebles et al., 2020) on the group structure:

Proposition 2. If A;A; = 0,Vi # j, then

0%g(t)
] — — 07
0t;0t

where g 1s the map defined in Eq. 4.

Proof. See Appendix 2.

This is a stronger constraint than Prop. 1 since A;A; = A;A; is implied by 4;A; = 0.



Method: (4) Constructing a VAE Model

Before imposing the proposed disentanglement constraints, we first
introduce a VAE variant called bottleneck-VAE:

Proposition 3. Suppose two latent variables z and t are
used to model the log-likelihood of data x, then we have:

logp(x) > Liorteneck(T, 2, 1)
= Eq(212) Eq(t|z,2)10g P(7, 2]1)
— Eg(z12) K L(q(t]z, 2)[|p(?)) — Eq(2)a)l0g g(2|z) (9)
= Ey(2|x)q(t]2)10g P(z|2)p(2]1)
— Eq(212) K L(q(t]2)[|p(t)) — Eq(z|z)log q(2|z), (10)
where Eq. 10 holds because we assume Markov property:
q(t|z) = q(t|z, z), p(z|2,t) = p(z|2).

Proof. See Appendix 4. []



Method: (4) Constructing a VAE Model

Prop. 3 defines a VAE variant which shares a layer of feature in the
encoder and the decoder:

Bottleneck-VAE
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In addition to a standard VAE, this model enforce z and Z to be equal.



Method: (4) Constructing a VAE Model

Our proposed Lie Group VAE is a slight variant of bottleneck-VAE,
which has a special group feature decoder:

Bottleneck-VAE
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Method: (4) Constructing a VAE Model

Our proposed Lie Group VAE is a slight variant of bottleneck-VAE,
which has a special group feature decoder:

Lie Group VAE
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Method: (4) Constructing a VAE Model

Inside the group decoder:
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Note that the Lie algebra basis {4;}/~, are learnable.

Prop. 1 and Prop. 2 are implemented as regularizations on {4;}/~,.
We refer a model with these constraints as Commutative Lie Group VAE.



Experiments

Ablation study on DSprites:
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Table 1. Ablation study of bottleneck-VAE and exponential map [ S — | | | | | |
. 0 10 20 30 40 50 60 70
on DSprites. Training Steps

Figure 3. How the KL-divergence loss (K L(q(t|z)||p(t))) evolves
during training for different models.



Experiments

Ablation study on DSprites: Mecomp  FVM SAP MIo el
0 83.6;{:3.2 40.7:|:12_2 17-2:&6.8 15.1:|:2_4
5 84.04+3.9 4544115 20.5+69 16.8443
20 85.8;&6,9 48.7:1:8.4 23.6:]:5,0 18.2i3,0
40 85.942.2 50.8450 25.4461 19.7146
SiZCgroup FVM SAP MIG DCI 80 85.5:1:4,8 47-1:l:8.6 23-3:l:6.2 18-3i6.5
4 23.6+33 6.316.0 4.213.9 3+0.5
9 574458 34.lt129 17.3474 12.4144  Table 3. Ablation study of one-parameter decomposition on
25 798425  39.6i134 20.6is5 199458 Dgprites.
64 82.T437 4224125 22.14101 20.046.8
81 844496 4524105 23.0+s.4 19.6+6.3
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Table 2. Ablation study of group size on DSprites. 5 83.842.4 46.8+128 19.8186 17.5156
20 86.1i1,8 54.1:&1.2 29.7:&3.1 23-4:t4.1
40 86.2118 48.241.9 25.248.4 19.1441
80 85.0;};1_6 43.6;};11,3 20.1:1:8.4 17.4;1:4,2

Table 4. Ablation study of Hessian penalty on DSprites.



Experiments

State-of-the-art comparison:

Model DSprites 3DShapes
VAE 69.41109 83.6145
B-VAE 4.4 77 91 (Kim & Mnih, 2018)

Cascade-VAE 81.74419 97
Factor-VAE 82.1540 88

89 (Kim & Mnih, 2018)

Ours 86.1:|:2.0

93.21 4.0

Table 5. Unsupervised disentanglement state-of-the-art compari-

son on DSprites and 3DShapes.



Experiments

Qualitative results:

DSprites 3DShapes
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Figure 5. Latent traversals of our Commutative Lie Group VAE on
DSprites and 3DShapes datasets.
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Thank you!



