Commutative Lie Group VAE for Disentanglement Learning (Long Talk)

Xinqi Zhu, Chang Xu, Dacheng Tao

The University of Sydney

Rethinking Disentanglement Learning

Traditional disentangled representation.
We view each embedded sample as a point.

Rethinking Disentanglement Learning

However, we can also view it as space translation.

Rethinking Disentanglement Learning

However, we can also view it as space translation.

Rethinking Disentanglement Learning

However, we can also view it as space translation.

Rethinking Disentanglement Learning

However, we can also view it as space translation.

Rethinking Disentanglement Learning

However, we can also view it as space translation. Image variation \longleftrightarrow Equivariance Latent space translation

Rethinking Disentanglement Learning

Image variation

Latent space translation
Why translation?

Other transformations are possible.

Rethinking Disentanglement Learning

Suppose we encode an image as a state of the latent space.

Rethinking Disentanglement Learning

Suppose we encode an image as a state of the latent space.
The different image changes now correspond to different latent transformations.

Rethinking Disentanglement Learning

Suppose we encode an image as a state of the latent space.
The different image changes now correspond to different latent transformations.

Rethinking Disentanglement Learning

Semantic $1=g_{1}$: rotating transformation.
Semantic $2=g_{2}$: scaling transformation.

Rethinking Disentanglement Learning

A brief comparison:

Old fashion:
Semantic $1=g_{1}$: dim-1 translation.
Semantic $2=g_{2}$: dim-2 translation.

> Semantic $1=g_{1}:$ rotating transformation.
> Semantic $2=g_{2}:$ scaling transformation.

- OK, but why do we need the new fashion?

Rethinking Disentanglement Learning

A brief comparison:
These translations are fixed and predefined.

New fashion: $\begin{aligned} & \text { Semantic } 1=g_{1}: \begin{array}{l}\text { rotating transformation. } \\ \text { Semantic } 2=g_{2}\end{array} \text { scaling transformation. }\end{aligned}$
These transformations can be learned adaptively!

Rethinking Disentanglement Learning

Hypothesis:

The target equivariance can be more easily learned if an adaptive transformation structure is used to capture the semantic variations than a fixed structure.

Rethinking Disentanglement Learning

In this work, we use a learnable group structure to achieve this goal.

And in this work, we only consider continuous matrix groups.

An Impression on Group
A group element

Or

$$
\left[\begin{array}{l}
c_{1}^{\prime} \\
c_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
S_{\theta} & 0 \\
0 & S_{\theta}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
$$

The group element $g \in G$ maps a vector space to itself: $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.

An Impression on Group
A group element
$\sigma^{\prime}(x)=\stackrel{g}{g} \circ \sigma(x)$
$\left[\begin{array}{cc}\cos \phi^{\prime} & \sin \left[\begin{array}{c}\phi_{1}^{\prime} \\ -\sin \phi^{\prime}\end{array}\right. \\ \cos \left[\begin{array}{l}\phi_{2}^{\prime \prime}\end{array}\right]=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{cc}C \not C \Phi s\end{array} \quad \sin \phi\right. \\ c_{2} \sin \phi & \cos \phi\end{array}\right]$
Or

$$
\left[\begin{array}{cc}
S_{\phi^{\prime}} & {\left[\begin{array}{cc}
\varepsilon_{1}^{\prime} \\
0 & \varepsilon_{\phi_{2}^{\prime}}
\end{array}\right]=\left[\begin{array}{cc}
S_{\theta} & 0 \\
0 & S_{\theta}
\end{array}\right]\left[\begin{array}{cc}
\varepsilon_{\phi+} \\
c_{Q}
\end{array}\right]} \\
S_{\phi}
\end{array}\right]
$$

Now the group element $g \in G$ maps a group structure to itself: $G \rightarrow G$.

We assume there is a canonical sample x_{0}, and every other sample is transformed from the canonical one:

$$
\sigma(x)=g_{0 \rightarrow x} \circ \sigma\left(x_{0}\right), \quad \text { and: } \quad \begin{aligned}
& g_{1} \circ \sigma(x)=\left(g_{1} \circ g_{0 \rightarrow x}\right) \circ \sigma\left(x_{0}\right) \\
& \\
& g_{2} \circ \sigma(x)=\left(g_{2} \circ g_{0 \rightarrow x}\right) \circ \sigma\left(x_{0}\right)
\end{aligned}
$$

Method: (1) Group representation

We assume there is a canonical sample x_{0}, and every other sample is transformed from the canonical one:

$$
\sigma(x)=g_{0 \rightarrow x} \circ \sigma\left(x_{0}\right), \text { and: } \begin{array}{ll}
& g_{1} \circ \sigma(x)=\left(g_{1} \circ g_{0 \rightarrow x}\right) \circ \sigma\left(x_{0}\right) \\
& g_{2} \circ \sigma(x)=\left(g_{2} \circ g_{0 \rightarrow x}\right) \circ \sigma\left(x_{0}\right)
\end{array}
$$

It's the group $g \in G$ that defines the representation structure (relation between samples).

The canonical embedding $\sigma\left(x_{0}\right)$ can be seen as a constant.
We propose to set $\sigma\left(x_{0}\right)$ to be a fixed value: the group identity element (e).

$$
\sigma(x)=g_{0 \rightarrow x} \circ \sigma\left(x_{0}\right)=g_{0 \rightarrow x} \circ e=g_{0 \rightarrow x}
$$

Now the samples are embedded on a group structure.
We name this embedding as the 'group representation'.

Method: (1) Group representation
A brief summary:

(-0) ...looks cool, but how to disentangle $\sigma(x)=g_{0 \rightarrow x}$?

Method: (1) Group representation
Expectation:

We expect every embedding to be decomposed into subgroup actions.
When a new semantic change comes:

$$
g_{2} \circ \sigma(x)=g_{2} \circ g_{0 \rightarrow x}=g_{1}(x) \circ\left(g_{2} \circ g_{2}(x)\right) \ldots \circ g_{m}(x) \circ e
$$

Method: (1) Group representation

Expectation:

$$
\sigma(x)=g_{0 \rightarrow x}=g_{1}(x) \circ g_{2}(x) \ldots \circ g_{m}(x) \circ e
$$

In this case, disentanglement on the group representation is achieved via subgroup decomposition.

- - - ...looks cool, but how to learn this decomposable group representation?

Method: (2) Lie Algebra Parameterization

$$
\sigma(x)=g_{0 \rightarrow x}
$$

This representation is on a group structure.
At lease we need a way to obtain elements on a group!
In this work, we focus on Lie group and adopt Lie algebra parameterization:

$$
\begin{aligned}
& g(t)=\exp (A(t)), g \in G, A \in \mathfrak{g} \\
& A(t)=t_{1} A_{1}+t_{2} A_{2}+\cdots+t_{m} A_{m}, \forall t_{i} \in \mathbb{R}, A_{i} \in \mathbb{R}^{d \times d} \\
&
\end{aligned}
$$

Method: (2) Lie Algebra Parameterization

$$
\sigma(x)=g_{0 \rightarrow x}
$$

This representation is on a group structure.
At lease we need a way to obtain elements on a group!
In this work, we focus on Lie group and adopt Lie algebra parameterization:

$$
\begin{aligned}
& g(t)=\exp (A(t)), g \in G, A \in \mathfrak{g}, \\
& A(t)=t_{1} A_{1}+t_{2} A_{2}+\cdots+t_{m} A_{m}, \forall t_{i} \in \mathbb{R}, A_{i} \in \mathbb{R}^{d \times d}
\end{aligned}
$$

Now, a group G is defined through a vector space A.

Method: (2) Lie Algebra Parameterization

Since the Lie algebra is a vector space, we can now use general optimization methods (e.g. SGD, Adam) to learn a group structure!

We view the basis $\left\{A_{i}\right\}_{i=1}^{m}$ as learnable weights in a deep model as it determines the structure of the group.

Method: (2) Lie Algebra Parameterization
In this work, we enforce a straightforward group decomposition, namely 'one-parameter subgroup decomposition':

$$
\begin{aligned}
& g(t) \\
& =\exp \left(t_{1} A_{1}+t_{2} A_{2}+\cdots+t_{m} A_{m}\right) \\
& =\exp \left(t_{1} A_{1}\right) \exp \left(t_{2} A_{2}\right) \ldots \exp \left(t_{m} A_{m}\right) \\
& \text { Semantic } 1 \\
& \text { Semantic } 2 \\
& g_{m}\left(t_{m}\right) \\
& \text { Semantic } m
\end{aligned}
$$

00
Unfortunately, this decomposition doesn't hold in general.

Method: (3) Disentangle via Decomposition
A proposition is proposed to enforce this decomposition:
Proposition 1. If $A_{i} A_{j}=A_{j} A_{i}, \forall i, j$, then

$$
\begin{aligned}
& \exp \left(t_{1} A_{1}+t_{2} A_{2}+\ldots t_{m} A_{m}\right) \\
& =\exp \left(t_{1} A_{1}\right) \exp \left(t_{2} A_{2}\right) \ldots \exp \left(t_{m} A_{m}\right) \\
& =\prod_{\operatorname{perm}(i)} \exp \left(t_{i} A_{i}\right)
\end{aligned}
$$

Proof. See Appendix 1.
We can see this group decomposition is commutative, and it is where the 'commutative' in the title comes from.

Method: (3) Disentangle via Decomposition
Furthermore, we also consider another disentanglement constraint called Hessian Penalty (Peebles et al., 2020) on the group structure:

Proposition 2. If $A_{i} A_{j}=0, \forall i \neq j$, then

$$
H_{i j}=\frac{\partial^{2} g(t)}{\partial t_{i} \partial t_{j}}=0
$$

where g is the map defined in Eq. 4.
Proof. See Appendix 2.

This is a stronger constraint than Prop. 1 since $A_{i} A_{j}=A_{j} A_{i}$ is implied by $A_{i} A_{j}=0$.

Method: (4) Constructing a VAE Model

Before imposing the proposed disentanglement constraints, we first introduce a VAE variant called bottleneck-VAE:

Proposition 3. Suppose two latent variables z and t are used to model the log-likelihood of data x, then we have:

$$
\begin{align*}
& \log p(x) \geq \mathcal{L}_{\text {bottleneck }}(x, z, t) \\
& =\mathbb{E}_{q(z \mid x)} \mathbb{E}_{q(t \mid x, z)} \log p(x, z \mid t) \\
& \quad-\mathbb{E}_{q(z \mid x)} K L(q(t \mid x, z)| | p(t))-\mathbb{E}_{q(z \mid x)} \log q(z \mid x) \tag{9}\\
& =\mathbb{E}_{q(z \mid x) q(t \mid z)} \log p(x \mid z) p(z \mid t) \\
& \quad-\mathbb{E}_{q(z \mid x)} K L(q(t \mid z)| | p(t))-\mathbb{E}_{q(z \mid x)} \log q(z \mid x) \tag{10}
\end{align*}
$$

where Eq. 10 holds because we assume Markov property: $q(t \mid z)=q(t \mid x, z), p(x \mid z, t)=p(x \mid z)$.

Proof. See Appendix 4.

Method: (4) Constructing a VAE Model
Prop. 3 defines a VAE variant which shares a layer of feature in the encoder and the decoder:

Bottleneck-VAE

In addition to a standard VAE, this model enforce z and \hat{z} to be equal.

Method: (4) Constructing a VAE Model
Our proposed Lie Group VAE is a slight variant of bottleneck-VAE, which has a special group feature decoder:

Bottleneck-VAE

Method: (4) Constructing a VAE Model
Our proposed Lie Group VAE is a slight variant of bottleneck-VAE, which has a special group feature decoder:

Lie Group VAE

Method: (4) Constructing a VAE Model
Inside the group decoder:

Note that the Lie algebra basis $\left\{A_{i}\right\}_{i=1}^{m}$ are learnable.
Prop. 1 and Prop. 2 are implemented as regularizations on $\left\{A_{i}\right\}_{i=1}^{m}$. We refer a model with these constraints as Commutative Lie Group VAE.

Experiments

Ablation study on DSprites:

Models	FVM	SAP	MIG	DCI
VAE	$69.4_{ \pm 10.9}$	$19.7_{ \pm 10.6}$	$7.8_{ \pm 6.4}$	$8.1_{ \pm 4.1}$
+bottle	$74.6_{ \pm 8.1}$	$29.2_{ \pm 12.1}$	$12.9_{ \pm 6.6}$	$11.6_{ \pm 3.3}$
+exp	$\mathbf{8 3 . 6}_{ \pm 3.2}$	$\mathbf{4 0 . 7}_{ \pm 12.2}$	$\mathbf{1 7 . 2}_{ \pm 6.8}$	$\mathbf{1 5 . 1}_{ \pm 2.4}$

Table 1. Ablation study of bottleneck-VAE and exponential map on DSprites.

Figure 3. How the KL-divergence loss ($K L(q(t \mid x) \| p(t))$) evolves during training for different models.

Experiments

Ablation study on DSprites:				
Size $_{\text {group }}$	FVM	SAP	MIG	DCI
4	$23.6_{ \pm 3.3}$	$6.3_{ \pm 6.0}$	$4.2_{ \pm 3.9}$	$3_{ \pm 0.5}$
9	$57.4_{ \pm 5.8}$	$34.1_{ \pm 12.9}$	$17.3_{ \pm 7.4}$	$12.4_{ \pm 4.4}$
25	$79.8_{ \pm 2.8}$	$39.6_{ \pm 13.4}$	$20.6_{ \pm 8.5}$	$19.9_{ \pm 3.8}$
64	$82.7_{ \pm 3.7}$	$42.2_{ \pm 12.5}$	$22 . ._{ \pm 10.1}$	$\mathbf{2 0 . 0}_{ \pm 6.8}$
81	$84.4_{ \pm 2.6}$	$45.2_{ \pm 10.5}$	$23 . ._{ \pm 8.4}$	$19.6_{ \pm 6.3}$
100	$\mathbf{8 5 . 5}_{ \pm 2.2}$	$\mathbf{5 0 . 8}_{ \pm 5.0}$	$\mathbf{2 5 . 4}_{ \pm 6.1}$	$19.7_{ \pm 4.6}$

Table 2. Ablation study of group size on DSprites.

$\lambda_{\text {decomp }}$	FVM	SAP	MIG	DCI
0	83.6 ± 3.2	$40.7{ }_{ \pm 12.2}$	$17.2_{ \pm 6.8}$	$15.1_{ \pm 2.4}$
5	84.0 ± 3.9	45.4 ± 11.5	20.5 ± 6.9	$16.8{ }_{ \pm 4.3}$
20	$\mathbf{8 5 . 8}{ }_{ \pm 6.9}$	48.7 ± 8.4	$23.6 \pm \pm 5.0$	18.2 ± 3.0
40	85.5 ± 2.2	$50.8{ }_{ \pm 5.0}$	$\mathbf{2 5 . 4}{ }_{ \pm 6.1}$	$19.7{ }_{ \pm 4.6}$
80	85.5 ± 4.8	$47.1_{ \pm 8.6}$	$23.3{ }_{ \pm 6.2}$	$18.3_{ \pm 6.5}$
Table 3. Ablation study of one-parameter decomposition DSprites.				
$\lambda_{\text {hessian }}$	FVM	SAP	MIG	DCI
0	$83.6 \pm \pm .2$	$40.7{ }_{ \pm 12.2}$	$17.2_{ \pm 6.8}$	15.1 ± 2.4
5	83.8 ± 2.4	$46.8{ }_{ \pm 12.8}$	$19.8{ }_{ \pm 8.6}$	$17.5_{ \pm 5.6}$
20	$86.1_{ \pm 1.8}$	$54.1{ }_{ \pm 1.2}$	$29.7{ }_{ \pm 3.1}$	23.4 ${ }_{ \pm 4.1}$
40	$86.2{ }_{ \pm 1.8}$	48.2 ± 1.9	$25.2{ }_{ \pm 8.4}$	19.1 ± 4.1
80	$85.0_{ \pm 1.6}$	$43.6_{ \pm 11.3}$	$20.1_{ \pm 8.4}$	$17.4_{ \pm 4.2}$

Table 4. Ablation study of Hessian penalty on DSprites.

Experiments

State-of-the-art comparison:

Model	DSprites	3DShapes
VAE	$69.4_{ \pm 10.9}$	$83.6_{ \pm 6.5}$
β-VAE	$74.4_{ \pm 7.7}$	91 (Kim \& Mnih, 2018)
Cascade-VAE	$81.74_{ \pm 2.97}$	-
Factor-VAE	$82.15_{ \pm 0.88}$	89 (Kim \& Mnih, 2018)
Ours	$\mathbf{8 6 . 1}_{ \pm 2.0}$	$\mathbf{9 3 . 2}_{ \pm 4.0}$

Table 5. Unsupervised disentanglement state-of-the-art comparison on DSprites and 3DShapes.

Experiments

Qualitative results:

Figure 5. Latent traversals of our Commutative Lie Group VAE on DSprites and 3DShapes datasets.

Experiments

Qualitative results：

 Width

Angle
Thickness
Stroke
Circle size
Angle

Leg－style	妟	＊	早	易	兩	里	暏	解
Azimuth	H	而	m	早	易	䏱	易	坐
Size	＊	H	N	＋	解	㓭	風	巾
Material	生	暏	\＃	\＃h	胜	易	暏	里
Backrest	m	暏	易	暏	用	解	所	m
Thickness	朿	解	暏	昇	早	暏	早	序

Thank you!

