
Commutative Lie Group VAE for
Disentanglement Learning (Long Talk)

Xinqi Zhu, Chang Xu, Dacheng Tao
The University of Sydney

Rethinking Disentanglement Learning

Encode 0.3

0.7

0.8

0.7

Encode

𝑥

𝑦

Traditional disentangled representation.

0.3

0.2

Encode

We view each embedded sample as a point.

Semantic change 1

Semantic change 2

Rethinking Disentanglement Learning

Encode 0.3

0.7

0.8

0.7

Encode

𝑥

𝑦

0.3

0.2

Encode

However, we can also view it as space translation.

Semantic change 1

Semantic change 2

Rethinking Disentanglement Learning

Encode 0.3

0.7

0.8

0.7

Encode

𝑥

𝑦

0.3

0.2

Encode

However, we can also view it as space transla=on.

Semantic change 1

Semantic change 2

Rethinking Disentanglement Learning

Encode 0.3

0.7

0.8

0.7

Encode

𝑥

𝑦

0.3

0.2

Encode

However, we can also view it as space translation.

Seman1c change 1

Semantic change 2

Rethinking Disentanglement Learning

Encode 0.3

0.7

0.8

0.7

Encode

𝑥

𝑦

0.3

0.2

Encode

However, we can also view it as space translation.

Semantic change 1

Seman1c change 2

Rethinking Disentanglement Learning

Encode 0.3

0.7

0.8

0.7

Encode

𝑥

𝑦

0.3

0.2

Encode

However, we can also view it as space transla=on.

Image variation Latent space translation
Equivariance

Semantic change 1

Semantic change 2

Rethinking Disentanglement Learning

Image variation Latent space transla=on
Equivariance

Why translation?

Other transforma-ons are possible.

Rethinking Disentanglement Learning

Encode

𝑥

𝑦

Suppose we encode an image as a state of the latent space.

𝜎(𝑥)

Rethinking Disentanglement Learning

Encode

𝑥

𝑦
Encode

The different image changes now correspond to different
latent transformations.

𝜎(𝑥)

𝑔! ∘ 𝜎(𝑥)

Semantic change 1

Suppose we encode an image as a state of the latent space.

Rethinking Disentanglement Learning

Encode

Encode

𝑥

𝑦
Encode

The different image changes now correspond to different
latent transformations.

𝜎(𝑥)

𝑔! ∘ 𝜎(𝑥)

𝑔" ∘ 𝜎(𝑥)

Semantic change 1

Semantic change 2

Suppose we encode an image as a state of the latent space.

Rethinking Disentanglement Learning

Encode

Encode

𝑥

𝑦
Encode

Semantic 1 = 𝑔!: rotating transformation.

𝜎(𝑥)

𝑔! ∘ 𝜎(𝑥)

𝑔" ∘ 𝜎(𝑥)

Seman1c change 1

Semantic change 2

Semantic 2 = 𝑔": scaling transformation.

Rethinking Disentanglement Learning

Semantic 1 = 𝑔!: rotating transformation.
Seman=c 2 = 𝑔": scaling transforma=on.

A brief comparison:

Semantic 1 = 𝑔!: dim-1 translation.
Seman=c 2 = 𝑔": dim-2 transla=on.

Old fashion:

New fashion:

OK, but why do we need the new fashion?

Rethinking Disentanglement Learning

Seman=c 1 = 𝑔!: rota=ng transforma=on.
Semantic 2 = 𝑔": scaling transformation.

A brief comparison:

Seman=c 1 = 𝑔!: dim-1 transla=on.
Semantic 2 = 𝑔": dim-2 translation.

Old fashion:

New fashion:

These transformations can be learned adaptively!

These transla=ons are fixed and predefined.

Rethinking Disentanglement Learning
Hypothesis:

The target equivariance can be more easily learned if an adap?ve transforma?on
structure is used to capture the seman?c varia?ons than a fixed structure.

Learn equivariance

Learn equivariance Fit variations

New:

Fixed structure

Adaptive structure

Old:

Harder

Easier

Rethinking Disentanglement Learning

In this work, we use a learnable group structure to achieve this goal.

And in this work, we only consider continuous matrix groups.

An Impression on Group

𝜎# 𝑥 = 𝑔 ∘ 𝜎(𝑥)

𝑐!#

𝑐"#
= cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
𝑐!
𝑐"

𝑐#

𝑐$

𝑐!#

𝑐"#
= 𝑆$ 0

0 𝑆$
𝑐!
𝑐"

𝑐#

𝑐$

The group element 𝑔 ∈ 𝐺 maps a vector space to itself: ℝ! → ℝ!.

Or

A group element

An Impression on Group

Now the group element 𝑔 ∈ 𝐺 maps a group structure to itself: 𝐺 → 𝐺.

𝜎# 𝑥 = 𝑔 ∘ 𝜎(𝑥)

Or

cos𝜙′ sin𝜙′
− sin𝜙′ cos𝜙′ =

cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

cos𝜙 sin𝜙
− sin𝜙 cos𝜙

𝑆%# 0
0 𝑆%#

= 𝑆$ 0
0 𝑆$

𝑆% 0
0 𝑆%

𝑐!#

𝑐"#
= cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
𝑐!
𝑐"

𝑐!#

𝑐"#
= 𝑆$ 0

0 𝑆$
𝑐!
𝑐"

A group element

Method

Encode

Encode

Encode

𝜎(𝑥)

𝑔! ∘ 𝜎(𝑥)

𝑔" ∘ 𝜎(𝑥)

Seman1c change 1

Semantic change 2

How to define
this embedding?

𝜎 𝑥 = 𝑔&→(∘ 𝜎(𝑥&),

We assume there is a canonical sample 𝑥!, and every other sample is transformed from the canonical one:

and:
𝑔! ∘ 𝜎 𝑥 = (𝑔!∘ 𝑔&→() ∘ 𝜎(𝑥&);
𝑔" ∘ 𝜎 𝑥 = (𝑔"∘ 𝑔&→() ∘ 𝜎(𝑥&).

Group elements

Method: (1) Group representation

𝜎 𝑥 = 𝑔&→(∘ 𝜎(𝑥&),

We assume there is a canonical sample 𝑥!, and every other sample is transformed from the canonical one:

and:
𝑔! ∘ 𝜎 𝑥 = (𝑔!∘ 𝑔&→() ∘ 𝜎(𝑥&);
𝑔" ∘ 𝜎 𝑥 = (𝑔"∘ 𝑔&→() ∘ 𝜎(𝑥&).

It’s the group 𝑔 ∈ 𝐺 that defines the representation structure
(relation between samples).

The canonical embedding 𝜎(𝑥&) can be seen as a constant.

We propose to set 𝜎(𝑥&) to be a fixed value: the group identity element (𝑒).

𝜎 𝑥 = 𝑔&→(∘ 𝜎 𝑥& = 𝑔&→(∘ 𝑒 = 𝑔&→(,

Now the samples are embedded on a group structure.
We name this embedding as the ‘group representation’.

Method: (1) Group representation

𝜎 𝑥 = 𝑔&→(

Semantic change 1 Semantic change 2

Encode

𝑔! 𝑔"

𝑔! ∘ 𝑔&→(𝑔" ∘ 𝑔&→(

Encode

Encode

A brief summary:

…looks cool, but how to disentangle 𝜎 𝑥 = 𝑔"→$?

Method: (1) Group representation

𝜎 𝑥 = 𝑔&→(= 𝑔! 𝑥 ∘ 𝑔" 𝑥 … ∘ 𝑔* 𝑥 ∘ 𝑒
Expectation:

We expect every embedding to be decomposed into subgroup actions.

Seman1c 1

Semantic 2

Semantic m

Canonical

When a new semantic change comes:

𝑔" ∘ 𝜎 𝑥 = 𝑔" ∘ 𝑔&→(= 𝑔! 𝑥 ∘ (𝑔" ∘ 𝑔" 𝑥)… ∘ 𝑔* 𝑥 ∘ 𝑒

Method: (1) Group representation

𝜎 𝑥 = 𝑔&→(= 𝑔! 𝑥 ∘ 𝑔" 𝑥 … ∘ 𝑔* 𝑥 ∘ 𝑒
Expecta=on:

Semantic 1

Semantic 2

Seman1c m

Canonical

In this case, disentanglement on the group representation is achieved
via subgroup decomposition.

…looks cool, but how to learn this decomposable group representation?

Method: (2) Lie Algebra Parameterization

𝜎 𝑥 = 𝑔&→(

This representation is on a group structure.

At lease we need a way to obtain elements on a group!

In this work, we focus on Lie group and adopt Lie algebra parameteriza=on:

𝑔 𝑡 = exp 𝐴 𝑡 , 𝑔 ∈ 𝐺, 𝐴 ∈ 𝔤,

𝐴 𝑡 = 𝑡!𝐴! + 𝑡"𝐴" +⋯+ 𝑡*𝐴* , ∀𝑡+ ∈ ℝ, 𝐴+ ∈ ℝ,×, .

Basis Coordinates

Method: (2) Lie Algebra Parameteriza=on

𝜎 𝑥 = 𝑔&→(

This representation is on a group structure.

At lease we need a way to obtain elements on a group!

In this work, we focus on Lie group and adopt Lie algebra parameterization:

𝑔 𝑡 = exp 𝐴 𝑡 , 𝑔 ∈ 𝐺, 𝐴 ∈ 𝔤,

Now, a group 𝐺 is defined through a vector space 𝐴.

𝐴 𝑡 = 𝑡!𝐴! + 𝑡"𝐴" +⋯+ 𝑡*𝐴* , ∀𝑡+ ∈ ℝ, 𝐴+ ∈ ℝ,×, .

Method: (2) Lie Algebra Parameteriza=on

Since the Lie algebra is a vector space, we can now use general
optimization methods (e.g. SGD, Adam) to learn a group structure!

We view the basis 𝐴+ +.!
* as learnable weights in a deep model as it

determines the structure of the group.

Method: (2) Lie Algebra Parameteriza=on

In this work, we enforce a straightforward group decomposition,
namely ‘one-parameter subgroup decomposition’:

𝑔 𝑡
= exp 𝑡!𝐴! + 𝑡"𝐴" +⋯+ 𝑡*𝐴*
= exp 𝑡!𝐴! exp 𝑡"𝐴" …exp(𝑡*𝐴*)

𝑔! 𝑡!
Semantic 1

𝑔" 𝑡"
Seman>c 2

𝑔* 𝑡*
Semantic m

Unfortunately, this decomposition doesn’t hold in general.

Method: (3) Disentangle via Decomposition

A proposi=on is proposed to enforce this decomposi=on:

We can see this group decomposition is commutative, and it is where
the ‘commutative’ in the title comes from.

Method: (3) Disentangle via Decomposition

Furthermore, we also consider another disentanglement constraint
called Hessian Penalty (Peebles et al., 2020) on the group structure:

This is a stronger constraint than Prop. 1 since 𝐴+𝐴/ = 𝐴/𝐴+ is implied by 𝐴+𝐴/ = 0.

Method: (4) Constructing a VAE Model

Before imposing the proposed disentanglement constraints, we first
introduce a VAE variant called bottleneck-VAE:

Method: (4) Constructing a VAE Model

Prop. 3 defines a VAE variant which shares a layer of feature in the
encoder and the decoder:

𝐸012 𝐸3456 𝐷3456

𝜇!

𝜇"

𝜎!

𝜎"

𝑡!

𝑡"

𝑙𝑜𝑠𝑠()*_,(-./
𝑙𝑜𝑠𝑠()*_01,

Bottleneck-VAE

𝐷012
𝑥 F𝑥�̂� 𝑧

In addition to a standard VAE, this model enforce 𝑧 and �̂� to be equal.

Method: (4) Construc=ng a VAE Model

Our proposed Lie Group VAE is a slight variant of bottleneck-VAE,
which has a special group feature decoder:

𝐸012 𝐸3456 𝐷3456

𝜇!

𝜇"

𝜎!

𝜎"

𝑡!

𝑡"

𝑙𝑜𝑠𝑠()*_,(-./
𝑙𝑜𝑠𝑠()*_01,

Bottleneck-VAE

𝐷012
𝑥 F𝑥�̂� 𝑧

Method: (4) Constructing a VAE Model

Our proposed Lie Group VAE is a slight variant of bottleneck-VAE,
which has a special group feature decoder:

𝐸012 𝐸3456 𝐷2789:

𝜇!

𝜇"

𝜎!

𝜎"

𝑡!

𝑡"

𝑙𝑜𝑠𝑠()*_,(-./
𝑙𝑜𝑠𝑠()*_01,

Lie Group VAE

𝐷012
𝑥 F𝑥�̂� 𝑧

Method: (4) Constructing a VAE Model

Inside the group decoder:

𝑡!

𝑡"

𝐴!

𝐴"

⨀

⨀

⨁ 𝐴 𝑧expm %latten 𝑧

𝐷)*+,-
𝑙𝑜𝑠𝑠4)*-1//6)77089

Note that the Lie algebra basis 𝐴+ +.!
* are learnable.

Prop. 1 and Prop. 2 are implemented as regularizations on 𝐴+ +.!
* .

We refer a model with these constraints as Commutative Lie Group VAE.

Experiments

Abla=on study on DSprites:

Experiments

Ablation study on DSprites:

Experiments

State-of-the-art comparison:

Experiments

Qualitative results:

Experiments

Qualita=ve results:

Thank you!

