Commutative Lie Group VAE for Disentanglement Learning (Long Talk) Xinqi Zhu, Chang Xu, Dacheng Tao The University of Sydney

Traditional disentangled representation.

We view each embedded sample as a point.

Other transformations are possible.

Suppose we encode an image as a state of the latent space.

Suppose we encode an image as a state of the latent space. The different image changes now correspond to different latent transformations.

Suppose we encode an image as a state of the latent space. The different image changes now correspond to different latent transformations.

Semantic $1 = g_1$: rotating transformation. Semantic $2 = g_2$: scaling transformation.

A brief comparison:

Old fashion: Semantic $1 = g_1$: dim-1 translation. Semantic $2 = g_2$: dim-2 translation.

New fashion: Semantic $1 = g_1$: rotating transformation. Semantic $2 = g_2$: scaling transformation.

OK, but why do we need the new fashion?

These translations are fixed and predefined. A brief comparison: Semantic $1 = g_1$: dim-1 translation. Old fashion: Semantic $2 = g_2$: dim-2 translation. Semantic $1 = g_1$: rotating transformation. New fashion: Semantic $2 = g_2$: scaling transformation.

These transformations can be learned adaptively!

Hypothesis:

The target equivariance can be more easily learned if an adaptive transformation structure is used to capture the semantic variations than a fixed structure.

In this work, we use a learnable group structure to achieve this goal.

And in this work, we only consider continuous matrix groups.

The group element $g \in G$ maps a vector space to itself: $\mathbb{R}^2 \to \mathbb{R}^2$.

Now the group element $g \in G$ maps a group structure to itself: $G \rightarrow G$.

We assume there is a canonical sample x_0 , and every other sample is transformed from the canonical one:

$$\sigma(x) = g_{0 \to x} \circ \sigma(x_0), \text{ and:} \qquad \begin{array}{l} g_1 \circ \sigma(x) = (g_1 \circ g_{0 \to x}) \circ \sigma(x_0); \\ g_2 \circ \sigma(x) = (g_2 \circ g_{0 \to x}) \circ \sigma(x_0). \end{array}$$

Method: (1) Group representation

We assume there is a canonical sample x_0 , and every other sample is transformed from the canonical one:

$$\sigma(x) = g_{0 \to x} \circ \sigma(x_0), \text{ and:} \qquad \begin{array}{l} g_1 \circ \sigma(x) = (g_1 \circ g_{0 \to x}) \circ \sigma(x_0) \\ g_2 \circ \sigma(x) = (g_2 \circ g_{0 \to x}) \circ \sigma(x_0) \end{array}$$

It's the group $g \in G$ that defines the representation structure (relation between samples).

The canonical embedding $\sigma(x_0)$ can be seen as a constant.

We propose to set $\sigma(x_0)$ to be a fixed value: the group identity element (e).

$$\sigma(x) = g_{0 \to x} \circ \sigma(x_0) = g_{0 \to x} \circ e = g_{0 \to x},$$

Now the samples are embedded on a group structure. We name this embedding as the 'group representation'.

Method: (1) Group representation

Expectation:

We expect every embedding to be decomposed into subgroup actions.

When a new semantic change comes:

$$g_2 \circ \sigma(x) = g_2 \circ g_{0 \to x} = g_1(x) \circ (g_2 \circ g_2(x)) \dots \circ g_m(x) \circ e$$

Method: (1) Group representation

Expectation:

In this case, disentanglement on the group representation is achieved via subgroup decomposition.

...looks cool, but how to learn this decomposable group representation?

Method: (2) Lie Algebra Parameterization

$$\sigma(x) = g_{0 \to x}$$

This representation is on a group structure.

At lease we need a way to obtain elements on a group!

In this work, we focus on Lie group and adopt Lie algebra parameterization:

$$g(t) = \exp(A(t)), g \in G, A \in \mathfrak{g},$$

$$A(t) = t_1 A_1 + t_2 A_2 + \dots + t_m A_m, \forall t_i \in \mathbb{R}, A_i \in \mathbb{R}^{d \times d}.$$

Basis Coordinates

Method: (2) Lie Algebra Parameterization

$$\sigma(x) = g_{0 \to x}$$

This representation is on a group structure.

At lease we need a way to obtain elements on a group!

In this work, we focus on Lie group and adopt Lie algebra parameterization:

$$g(t) = \exp(A(t)), g \in G, A \in \mathfrak{g},$$
$$A(t) = t_1 A_1 + t_2 A_2 + \dots + t_m A_m, \forall t_i \in \mathbb{R}, A_i \in \mathbb{R}^{d \times d}.$$

Now, a group G is defined through a vector space A.

Since the Lie algebra is a vector space, we can now use general optimization methods (e.g. SGD, Adam) to learn a group structure!

We view the basis $\{A_i\}_{i=1}^m$ as learnable weights in a deep model as it determines the structure of the group.

Method: (2) Lie Algebra Parameterization

In this work, we enforce a straightforward group decomposition, namely 'one-parameter subgroup decomposition':

(Unfortunately, this decomposition doesn't hold in general.

Method: (3) Disentangle via Decomposition

A proposition is proposed to enforce this decomposition:

Proposition 1. If $A_iA_j = A_jA_i, \forall i, j$, then

$$\exp(t_1A_1 + t_2A_2 + \dots t_mA_m)$$

=
$$\exp(t_1A_1)\exp(t_2A_2)\dots\exp(t_mA_m)$$

=
$$\prod_{\text{perm}(i)}\exp(t_iA_i).$$

Proof. See Appendix 1.

We can see this group decomposition is commutative, and it is where the 'commutative' in the title comes from. Method: (3) Disentangle via Decomposition

Furthermore, we also consider another disentanglement constraint called Hessian Penalty (Peebles et al., 2020) on the group structure:

Proposition 2. If $A_iA_j = 0, \forall i \neq j$, then

$$H_{ij} = \frac{\partial^2 g(t)}{\partial t_i \partial t_j} = 0,$$

where g is the map defined in Eq. 4.

Proof. See Appendix 2.

This is a stronger constraint than Prop. 1 since $A_iA_i = A_iA_i$ is implied by $A_iA_i = 0$.

Before imposing the proposed disentanglement constraints, we first introduce a VAE variant called bottleneck-VAE:

Proposition 3. Suppose two latent variables z and t are used to model the log-likelihood of data x, then we have:

 $\log p(x) \geq \mathcal{L}_{bottleneck}(x, z, t)$ $= \mathbb{E}_{q(z|x)} \mathbb{E}_{q(t|x,z)} \log p(x, z|t)$ $- \mathbb{E}_{q(z|x)} KL(q(t|x, z)||p(t)) - \mathbb{E}_{q(z|x)} \log q(z|x) \quad (9)$ $= \mathbb{E}_{q(z|x)q(t|z)} \log p(x|z)p(z|t)$ $- \mathbb{E}_{q(z|x)} KL(q(t|z)||p(t)) - \mathbb{E}_{q(z|x)} \log q(z|x), \quad (10)$

where Eq. 10 holds because we assume Markov property: q(t|z) = q(t|x, z), p(x|z, t) = p(x|z).

Proof. See Appendix 4.

Prop. 3 defines a VAE variant which shares a layer of feature in the encoder and the decoder:

Bottleneck-VAE

In addition to a standard VAE, this model enforce z and \hat{z} to be equal.

Our proposed Lie Group VAE is a slight variant of bottleneck-VAE, which has a special group feature decoder:

Bottleneck-VAE

Our proposed Lie Group VAE is a slight variant of bottleneck-VAE, which has a special group feature decoder:

Lie Group VAE

Note that the Lie algebra basis $\{A_i\}_{i=1}^m$ are learnable.

Prop. 1 and Prop. 2 are implemented as regularizations on $\{A_i\}_{i=1}^m$. We refer a model with these constraints as Commutative Lie Group VAE.

Ablation study on DSprites:

Models	FVM	SAP	MIG	DCI
VAE +bottle +exp	$\begin{array}{c} 69.4 \scriptstyle{\pm 10.9} \\ 74.6 \scriptstyle{\pm 8.1} \\ \textbf{83.6} \scriptstyle{\pm 3.2} \end{array}$	$\begin{array}{c} 19.7 \scriptstyle{\pm 10.6} \\ 29.2 \scriptstyle{\pm 12.1} \\ 40.7 \scriptstyle{\pm 12.2} \end{array}$	$\begin{array}{c} 7.8_{\pm 6.4} \\ 12.9_{\pm 6.6} \\ 17.2_{\pm 6.8} \end{array}$	$\begin{array}{c} 8.1_{\pm 4.1} \\ 11.6_{\pm 3.3} \\ 15.1_{\pm 2.4} \end{array}$

Table 1. Ablation study of bottleneck-VAE and exponential map on DSprites.

Figure 3. How the KL-divergence loss (KL(q(t|x)||p(t))) evolves during training for different models.

Ablation study on DSprites:

$\lambda_{ ext{decomp}}$	FVM	SAP	MIG	DCI
0	$83.6_{\pm 3.2}$	$40.7_{\pm 12.2}$	$17.2_{\pm 6.8}$	$15.1_{\pm 2.4}$
5	$84.0_{\pm 3.9}$	$45.4_{\pm 11.5}$	$20.5_{\pm 6.9}$	$16.8_{\pm 4.3}$
20	$\boldsymbol{85.8}_{\pm 6.9}$	$48.7_{\pm 8.4}$	$23.6_{\pm 5.0}$	$18.2_{\pm 3.0}$
40	$85.5_{\pm 2.2}$	$\boldsymbol{50.8}_{\pm 5.0}$	$25.4_{\pm 6.1}$	$\boldsymbol{19.7}_{\pm 4.6}$
80	$85.5_{\pm 4.8}$	$47.1_{\pm 8.6}$	$23.3_{\pm 6.2}$	$18.3_{\pm 6.5}$

Sizegroup	FVM	SAP	MIG	DCI
4	$23.6_{\pm 3.3}$	$6.3_{\pm 6.0}$	$4.2_{\pm 3.9}$	$3_{\pm 0.5}$
9	$57.4_{\pm 5.8}$	$34.1_{\pm 12.9}$	$17.3_{\pm 7.4}$	$12.4_{\pm 4.4}$
25	$79.8_{\pm 2.8}$	$39.6_{\pm 13.4}$	$20.6_{\pm 8.5}$	$19.9_{\pm 3.8}$
64	$82.7_{\pm 3.7}$	$42.2_{\pm 12.5}$	$22.1_{\pm 10.1}$	$\boldsymbol{20.0}_{\pm 6.8}$
81	$84.4_{\pm 2.6}$	$45.2_{\pm 10.5}$	$23.0_{\pm 8.4}$	$19.6 {\pm} {6.3}$
100	$\boldsymbol{85.5}_{\pm 2.2}$	$\boldsymbol{50.8}_{\pm 5.0}$	$25.4_{\pm 6.1}$	$19.7_{\pm 4.6}$

Table 2. Ablation study of group size on DSprites.

Table 3. Ablation study of one-parameter decomposition on DSprites.

$\lambda_{ ext{hessian}}$	FVM	SAP	MIG	DCI
0	$83.6_{\pm 3.2}$	$40.7_{\pm 12.2}$	$17.2_{\pm 6.8}$	$15.1_{\pm 2.4}$
5	$83.8_{\pm 2.4}$	$46.8_{\pm 12.8}$	$19.8_{\pm 8.6}$	$17.5_{\pm 5.6}$
20	$86.1_{\pm 1.8}$	$54.1_{\pm 1.2}$	$\boldsymbol{29.7}_{\pm 3.1}$	${f 23.4}_{\pm 4.1}$
40	$86.2_{\pm 1.8}$	$48.2_{\pm 1.9}$	$25.2_{\pm 8.4}$	$19.1_{\pm 4.1}$
80	$85.0_{\pm 1.6}$	$43.6{\scriptstyle \pm 11.3}$	$20.1_{\pm 8.4}$	$17.4_{\pm 4.2}$

Table 4. Ablation study of Hessian penalty on DSprites.

State-of-the-art comparison:

Model	DSprites	3DShapes
VAE	$69.4_{\pm 10.9}$	$83.6_{\pm 6.5}$
β -VAE	$74.4_{\pm 7.7}$	91 (Kim & Mnih, 2018)
Cascade-VAE	$81.74_{\pm 2.97}$	-
Factor-VAE	$82.15_{\pm 0.88}$	89 (Kim & Mnih, 2018)
Ours	86.1 $_{\pm 2.0}$	$93.2_{\pm 4.0}$

Table 5. Unsupervised disentanglement state-of-the-art comparison on DSprites and 3DShapes.

Qualitative results:

Figure 5. Latent traversals of our Commutative Lie Group VAE on DSprites and 3DShapes datasets.

Qualitative results: FactorVAE Ours Background Haircolor/ Age Azimuth Skin Hairlength Ambient color Fringe Headshape/ Smile Forehead Make-up

Circle size 666	660	666	66 Curviness	I J J	1 1 1	()
Thickness b b b	660	666	66 Thickness	1 1 1	1 1 1	<u>))))</u>
Width 6 6	660	666	66 6 Angle	1 1	111	11/1
Angle 666	660	666	66			
Thickness 9 9 9	999	999	99 Lifting	444	444	4 4 4 4
Stroke 999	999	199	99 Thickness	444	444	4444
Circle size 9 9 9	999	99	99 Stroke	444	444	4444
Angle 999	999	99	9 9 Angle	444	444	4444
Leg-style	*		× ×	क्रां क्रि	P	F 1 F 1
Azimuth	14	r <mark>r</mark> i r		R R	P	in in
Size	, n	h I	ri ri	Fr Fr	P	Pi Pi
Material	ħ	Fn I	के कि	in in	P	Pr Pr
Backrest	ιμι			μ. μ.	٣	λ τ η τη
Thickness			n In	h h	P 1	Fr Fr

Thank you!