Learning Curves for Analysis
of Deep Networks

Michal M. *
1 2 1
Derek Hoiem Tanmay Gupta Zhizhong Li Shlapentokh-

Rothman

" Ai2

Allen Institute for Al



Which classifier is better?

Model Error after
full training
(n=400)

A 27.9%

B 32.4%

Error

100

80
60
40
— @
.
20 A better than B
% | 0.05 0.1
(o0) (400) (100)

(# training samples per class)

0.25
(16)



Which classifier is better?
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Better characterize classifier performance with
learning curve and measure of data reliance
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Learning curves have been shown useful, but there is no
established methodology for how to use them in evaluation

model selection

relationship analysis
of model size, training size,
computation

extrapolation

Cortes et al.
NIPS 1993

Rosenfeld et al.
ICLR 2020

Kaplan et al.
arxiv 2020
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Our goal: make it easy to improve classifier
evaluations with learning curves

* Show how to model, fit, and display without using a
lot of computation or paper space

* Show that learning curves provide useful insights



Model learning curves with extended power law

n: Number of training samples (per class)
e(n) = a T+ nny e: Test error

Well supported by

* Theory: bias-variance trade-off, many
generalization bounds

* Practice: Hestness et al. 2017, Johnson & Nguyen
2017, Kaplan et al. 2020, Rosenfeld et al. 2020

* Our experiments



Error (e)

Fit learning curves with
weighted least squares

e(n) = & +An"

1/n

S F;
1. Giveny, solve for a,n G(v) = min>ﬁ >1 wij (€5 — o — 77’”/7)2
a’,r] o >
i=1 j=1

e;j: observation test error on split i with size F;
w; ;. accounts for variance of e;; and number of splits

2. Stepovery Wefgl_ifllo) G(7) + Aly + 0.5



Extended power law model and weighted fitting lead to better
prediction of error and more stable parameters

Functional Form

e(n) =a+nn-

0.5

e(n) = a+nnv

e(m)=a+nn % +6én?t

e(n) = a +nn? + én?

Parameters

a,n
a,ny
a,n,o

a,ny,

)

RMSE
Params Weights R? 25 50 100 200 400 avg p-value
—= 0998 240 086 054 057 085 1.04 -

a, 1,y % 0.999 238 083 069 054 108 1.10 0.6
1 0.998 266 086 079 050 126 121 0.008

a, 1 —m 0988 341 109 069 072 121 142 <0.001
a,n,d =7 0999 2389 074 068 056 094 1.16  0.05
346 074 070 059 100 130  0.02

a,n,8,7y U+E 0.999

Leave-one-train-size-out error analysis:
Model accounts for 99.8% of e(n) variance and typically
predicts on held out training size within 1% error
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Stability analysis:

Given only 4 error observations (evaluations for 4
training sizes), our model better extrapolates and
leads to more stable parameters with resampling



Display learning curves as error vs n= %>
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How to characterize/summarize learning curves

A
QL .

. : . — e(N), By is locally
Problem. )./, 1, a highly (;ovarlant i linear approximation
with observation perturbations and not &

L

individually comparable across curves

Solution: re-parameterize

* ey = e(N) is error at full
training size N

e By = e’(N)/\/N is data-reliance
 Canrecover a,y,n from ey, By, ¥V

n=o 1/Vn n=sma7l



P characterizes how error depends on data size, is stably estimated
under perturbation, and easy to derive for other models

>

Display learning curve
analysis with only one
extra column for Sy

Error (e)

e(N), By is locally
linear approximation
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63(",'?.) = + n - n?
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Effect of Pretraining Source
(Caltech-101)

Supervised ImageNet pretraining
provides much lower data-reliance
than others (for classification)

Error
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e(n)=a+n-n"
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Check out our deep learning quiz and additional
experiments in the paper to test your beliefs

Popular beliefs Your Supp- ‘Exp.
guess orted? figures
Pre-training on similar domains nearly always helps compared to training from scratch. [ ] Sa, 5b, 6
Pre-training, even on similar domains, introduces bias that would harm performance with a large enough training set. [ ] 6
Self-/un-supervised training performs better than supervised pre-training for small datasets. B 6
Fine-tuning the entire network (vs. just the classification layer) is only helpful if the training set is large. D 5a, 5b
Increasing network depth, when fine-tuning, harms performance for small training sets, due to an overly complex model. [ ] Ta
Increasing network depth, when fine-tuning, is more helpful for larger training sets than smaller ones. [] Ta
Increasing network depth, if the backbone is frozen, is more helpful for smaller training sets than larger ones. [ ] 7d
Increasing depth or width improves more than ensembles of smaller networks with the same number of parameters. D 7f
Data augmentation is roughly equivalent to using a m-times larger training set for some m. D 8




Use learning curves to better evaluate your research contributions

from lc.measurements import CurveMeasurements
from lc.curve import LearningCurveEstimator
from omegaconf import OmegaConf

import matplotlib

import matplotlib.pyplot as plt

# Load error measurements
curvems = CurveMeasurements()
curvems. load_from_json('data/no_pretr_ft.json')

# Load config
cfg = OmegaConf.load('lc/config.yaml")

# Estimate curve
curve_estimator = LearningCurveEstimator(cfg)

curve, objective = curve_estimator.estimate(curvems)

# Plot

curve_estimator.plot(curve,curvems, label='No Pretr; Ft')

plt.show()

Thank You

https://github.com/allenai/learning-curve

https://prior.allenai.org/projects/lcurve



https://github.com/allenai/learning-curve
https://prior.allenai.org/projects/lcurve
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