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Unrestricted partition Explainable partition
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Price of Explainability

For a minimization problem,

PoE = max
I∈I

{
OPTe(I )

OPTu(I )

}

OPTe : optimal cost for an explainable partition

OPTu: optimal cost for an unrestricted partition

I: the set of instances of the problem
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Our results

Criterion Lower bound Upper bound

k-centers Ω
(√

dk1−1/d

log1.5 k

)
O
(√

dk1−1/d
)

k-medians Ω(log k) O(k), O(d log k)

k-means Ω(log k) O(k2), O(dk log k)

maximum spacing Θ(n − k)

Lower and upper bounds for the PoE of different clustering problems.
Bounds in red are from [Dasgupta et al., 2020, ICML].
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Related work

[Dasgupta et al., 2020, ICML]:

Price of Explainability
Bounds for k-medians and k-means
IMM algorithm

[Frost et al., 2020]:

ExKMC algorithm (not limited to k leaves)
Experimental results

[Charikar et al., STOC 00]:

Binary search tree with bound of O(log k) of finding one of k
items
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k-centers: problem description

Minimize the maximum distance between a point and the closest
reference center.
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k-centers: PoE lower bound

k = 16, d = 2

c i = (i , 4i mod 15)

Unrestricted cost: 3
4

Distance between
centers: ≈

√
k

No mistakeless cuts

Explainable cost:
Ω(
√
k) (for d = 2)
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k-centers: PoE lower bound

For general d :

Center c i coordinates are shifts of i representation in base
b = k1/p, where p = p(k, d)

2d points associated to each center, identical to associated
center in all but a single coordinate

Price of Explainability:

Ω(k1−1/d) (if d < log k/ log log k)

Ω
(√

d k
√
log log k

log1.5 k

)
(otherwise)
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k-centers: PoE upper bound

k = 9, d = 2

Bounding box of size
D1 × D2

Grid strategy:
equal-sized boxes
(D1/

√
k)× (D2/

√
k)

Cost ≤ max{D1,D2}√
k

Can be arbitrarily bad
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k-centers: PoE upper bound

Refined Grid:

1 Perform as many mistakeless cuts as possible
2 Apply Grid

If no more mistakeless cuts are possible,
OPTunrestricted ≥ max{D1,D2}

k

PoE is O(
√
k) for d = 2 (tight bound)

For general d , PoE is O(
√
dk1−1/d)
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k-medians: problem description

Minimize the sum of the `1 distances between each point and its
reference center (the median of all points in the cluster).
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k-medians: original PoE upper bound

[Dasgupta et al., ICML
2020]:

IMM algorithm: greedily
apply cut that minimizes
the number of mistakes

Cost(D) =
OPT +

∑
v∈D Excess(v)

Excess(v) ≤
#mistakes(v) · diam(v)

Eduardo Laber and Lucas Murtinho
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k-medians: original PoE upper bound

[Dasgupta et al., ICML
2020]:

Theorem: IMM yields up-
per bound of O(k) to PoE
of k-medians

Independent of d

What happens when d
is small?

Eduardo Laber and Lucas Murtinho

On the price of explainability for some clustering problems



Introduction k-centers k-medians k-means Maximum spacing

k-medians: improved PoE upper bound for low dimensions

Our approach:

Build a tree Di for
each dimension
i = 1, . . . , d

Factor of log k

Build the final tree D
selecting nodes from
D1, . . . ,Dd

Factor of d

PoE is O(d log k)
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k-medians: finding the tree for a single coordinate

For a given i , minimizing

Excess(D, i) =
∑
v∈Di

#Mistakes(v) · Diam(v)i

reduces to a binary search problem where items have distinct
search probabilities and probing costs:

probing cost = # of mistakes
search probability = distance between item’s adjacent centers
at coordinate i

[Charikar et al., STOC 00]: BST for k items where the cost of
finding an item j is at most O(log k) larger than its probing
cost

Eduardo Laber and Lucas Murtinho
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k-medians: selecting the best cut for the final tree

Pick coordinate i associated
to the largest side of the box
that bounds the points in u

Apply cut in Di given by the
least common ancestors of
the centers that reached u
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k-means: problem description

Minimize the sum of the squared `2 distances between each point and its
reference center (the mean of all points in the cluster).

Eduardo Laber and Lucas Murtinho
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k-means: improved PoE upper bound for low dimensions

Same algorithm as for k-medians

The factor for each Di is multiplied by k due to the cost
function of k-means

The PoE for k-means is O(dk log k)
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k-means: a practical algorithm

Ex-Greedy: recursively find the best cut that separates at
least two centers and that minimizes the k-means cost of a
k-partition, considering that:

points cannot be assigned to centers from which they were
separated
the k reference centers are always the same

The algorithm maintains a k-partition as it runs, but only
when it ends is it guaranteed that the partition is explainable

Contrast with ExKMC [Frost et al., 2020], in which
explainable partitions with 2, 3, . . . , k clusters are defined after
each cut

Eduardo Laber and Lucas Murtinho
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k-means: Ex-Greedy example
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k-means: Ex-Greedy results
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Maximum spacing: problem description

Maximize the distance between the closest points that belong to different
clusters.
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Maximum spacing: PoE lower bound

k = d = 2

OPTunrestricted = n/2

OPTexplainable = 1

For general d , dataset
with unrestricted
spacing O(n − k) and
explainable spacing 1

PoE is Ω(n − k)

Eduardo Laber and Lucas Murtinho
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Maximum spacing: PoE upper bound

O(n − k) algorithm:

1 Cexp ← all points

2 C ∗ ← optimal unrestricted partition

3 Repeat k − 1 times:

S ← group in Cexp not contained in any group of C∗

Split S with the axis-aligned cut that yields two clusters with
maximum spacing

Eduardo Laber and Lucas Murtinho
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Thank you!

Questions?
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