
Selecting Data Augmentation for Simulating Interventions

Maximilian Ilse, Jakub M. Tomczak, Patrick Forré

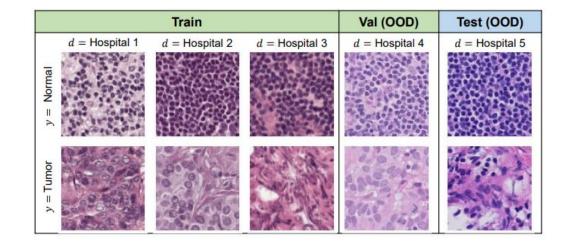
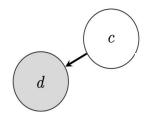
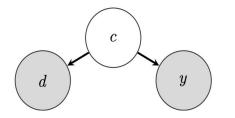
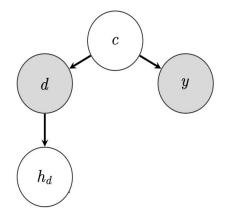



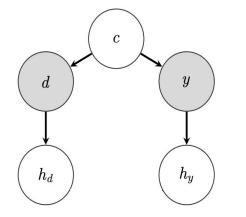
Image taken from Koh et al. - WILDS



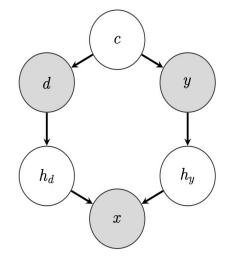
c confounder: geographical location



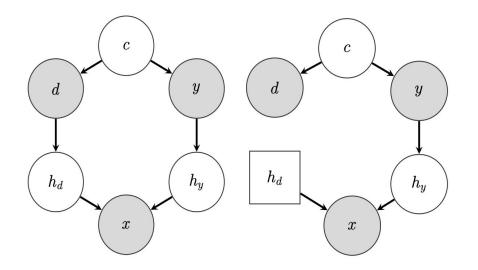
c confounder: geographical location

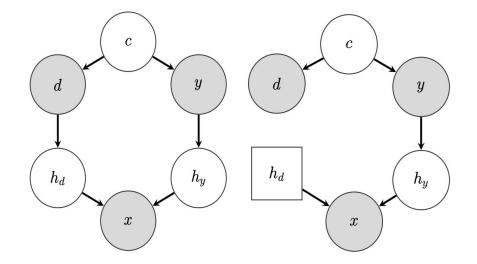

d domain: hospital

- *c* confounder: geographical location
- d domain: hospital
- y label: disease

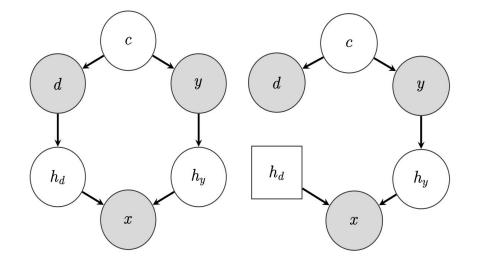


- c confounder: geographical location
- d domain: hospital
- y label: disease
- h_d high level features caused by d: color

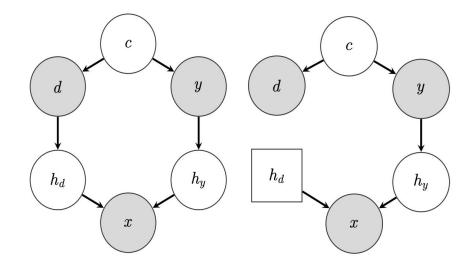



- *c* confounder: geographical location
- d domain: hospital
- y label: disease
- h_d high level features caused by d: color

 h_y high level features caused by y: morphology


- c confounder: geographical location
- d domain: hospital
- y label: disease
- h_d high level features caused by d: color
- $h_{m{y}}$ high level features caused by y: morphology
 - x observation: image

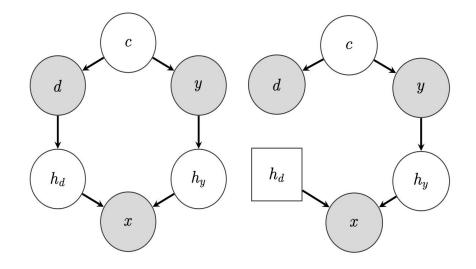
Noise intervention:


$$do(\mathbf{h}_d = \xi)$$
, where $\xi \sim N_{\xi}$

Noise intervention:

$$do(\mathbf{h}_d = \xi)$$
, where $\xi \sim N_{\xi}$

Removes spurious correlation



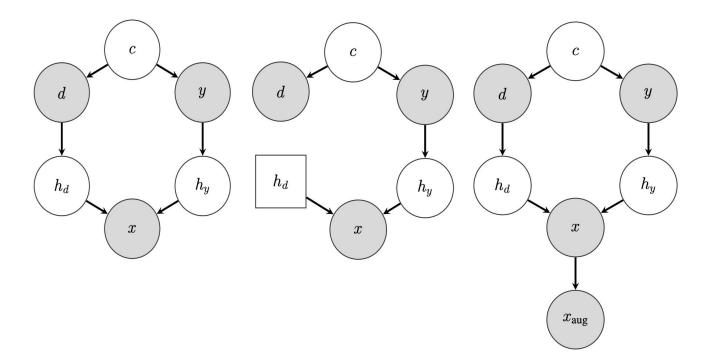
Noise intervention:

$$do(\mathbf{h}_d = \xi)$$
, where $\xi \sim N_{\xi}$

Removes spurious correlation

Interventions need to happen in the real world

Noise intervention:


$$\operatorname{do}(\mathbf{h}_d = \xi)$$
, where $\xi \sim N_{\xi}$

Removes spurious correlation

Interventions need to happen in the real world

Data Augmentation

Data augmentation

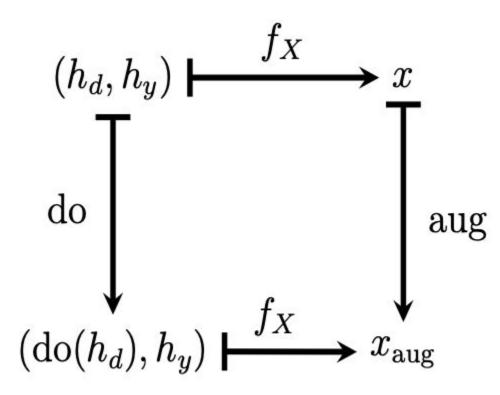


Figure 3: Intervention-augmentation equivariance expressed in a commutative diagram.

Select Data Augmentation (SDA)

Table 1: Results on Rotated MNIST results. Average accuracy for ten seeds.

Target	ERM	DANN	CDANN	SDA
0°	75.4	77.1	78.5	96.1
30°	93.4	94.2	94.9	95.9
60°	94.5	95.2	95.6	95.7
90°	79.6	83.0	84.0	95.9
Ave	85.7	87.4	88.3	95.9

Table 3: Results on Colored MNIST. Average accuracy \pm standard deviation for ten seeds.

Acc	ERM	IRM	REx	SDA
	$\textbf{87.4} \pm \textbf{0.2}$			
Test	17.1 ± 0.6	66.9 ± 2.5	68.7 ± 0.9	$\textbf{74.1} \pm \textbf{0.9}$

Table 2: Results on PACS dataset. Average accuracy for five seeds.

Target	ERM	CDANN	L2G	GLCM	SSN	IRM	REx	MetaReg	JigSaw	SDA
A	63.3	62.7	66.2	66.8	64.1	67.1	67.0	69.8	67.6	70.45
C	63.1	69.7	66.9	69.7	66.8	68.5	68.0	70.4	71.7	68.49
Р	87.7	78.7	88.0	87.9	90.2	89.4	89.7	91.1	89.0	88.35
S	54.1	64.5	59.0	56.3	60.1	57.8	59.8	59.3	65.2	72.24
Ave	67.1	68.9	70.0	70.2	70.3	70.7	71.1	72.6	73.4	74.9