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Performance Awareness in RL

* RL in risk-intolerant applications:

9 fix 2 test 2 Cunin produc@

Most works Our work

* Requirement: notice defects ASAP
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Detecting Rewards Deterioration

* Are the rewards in recent episodes smaller than usual?

T T I - sume i.d episodes

“Smaller”  Reference dataset (e.g. tests recordings) * Average reward per episode

than what? * Time-steps with small variance are
more informative!

Rewards « Weighted average

are not i.i.d e W =1Tx"1

e (all-1 vector & cov matrix)
e Better than simple average
* Under normality: optimal
* Benefit depends on X’s spectrum
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Detecting Rewards Deterioration

* Are the rewards in recent episodes smaller than usual?

“Smaller” Reference dataset (e.g. tests recordings)
than what?

Rewards l.i.d episodes — use weighted average
are not i.i.d per episode

Sequential BFAR — Bootstrap for False Alarm Rate
tests — control

inflation of ¢ Sample episodes (not time-steps!)
false-alarms ¢ Handle incomplete episodes



rejected [%]

Experiments

* Probability to notice deterioration after t steps
* Qur test variants: UDT, PDT, MIDT
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“After 10* time-steps, MDT has
40% to detect the degradation”



