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Performance Awareness in RL

• RL in risk-intolerant applications:

train   fix   test   run in production

• Requirement: notice defects ASAP

Most works Our work
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• Better than simple average

• Under normality: optimal

• Benefit depends on Σ’s spectrum
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BFAR – Bootstrap for False Alarm Rate 
control
• Sample episodes (not time-steps!)
• Handle incomplete episodes



• Probability to notice deterioration after 𝑡 steps
• Our test variants: UDT, PDT, MDT

Experiments

+10% engine cost+30% engine cost-10% leg size1:20 engine SNR

“After 104 time-steps, MDT has 
40% to detect the degradation”


