Detecting Rewards Deterioration in Episodic RL Ido Greenberg & Shie Mannor Technion, Israel **ICML 2021** #### Performance Awareness in RL • RL in risk-intolerant applications: Requirement: notice defects ASAP | Issue | Solution | |----------------------|----------| | "Smaller" than what? | | | | | | | | | | | | Issue | Solution | |----------------------|---| | "Smaller" than what? | Reference dataset (e.g. tests recordings) | | | | | | | | | | train $$\rightarrow$$ fix \rightarrow test \rightarrow run in production | Issue | Solution | |--------------------------|---| | "Smaller" than what? | Reference dataset (e.g. tests recordings) | | Rewards
are not i.i.d | | | | | | | | - Assume i.i.d episodes - Average reward per episode | Issue | Solution | |--------------------------|---| | "Smaller" than what? | Reference dataset (e.g. tests recordings) | | Rewards
are not i.i.d | | | | | | | | - Assume i.i.d episodes - Average reward per episode - Time-steps with small variance are more informative! | Issue | Solution | |--------------------------|---| | "Smaller" than what? | Reference dataset (e.g. tests recordings) | | Rewards
are not i.i.d | | | | | | | | - Assume i.i.d episodes - Average reward per episode - Time-steps with small variance are more informative! - Weighted average - $W = \mathbf{1}^{\mathsf{T}} \Sigma^{-1}$ - (all-1 vector & cov matrix) | Issue | Solution | |--------------------------|---| | "Smaller" than what? | Reference dataset (e.g. tests recordings) | | Rewards
are not i.i.d | | | | | | | | - Assume i.i.d episodes - Average reward per episode - Time-steps with small variance are more informative! - Weighted average - $W = \mathbf{1}^{\mathsf{T}} \Sigma^{-1}$ - (all-1 vector & cov matrix) - Better than simple average - Under normality: optimal - Benefit depends on Σ 's spectrum | Issue | Solution | |---|---| | "Smaller" than what? | Reference dataset (e.g. tests recordings) | | Rewards
are not i.i.d | I.i.d episodes – use weighted average per episode | | Sequential
tests –
inflation of
false-alarms | | | Issue | Solution | |---|--| | "Smaller" than what? | Reference dataset (e.g. tests recordings) | | Rewards
are not i.i.d | I.i.d episodes – use weighted average per episode | | Sequential
tests –
inflation of
false-alarms | BFAR – Bootstrap for False Alarm Rate control Sample episodes (not time-steps!) Handle incomplete episodes | ## Experiments - Probability to notice deterioration after t steps - Our test variants: UDT, PDT, MDT