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Compressed Sensing

Want to recover a signal (e.g. an image) from noisy measurements.

Medical
Imaging

Astronomy Single-Pixel
Camera

Oil Exploration

Linear measurements: see y = Ax∗ + noise, for A ∈ Rm×n.

How many measurements m to recover x∗?

Algorithm to recover x∗?
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Compressed Sensing

y = A

x∗m

n

n

Given linear measurements y = Ax∗, for A ∈ Rm×n.

How many measurements m to learn the signal x∗?

I Naively: m ≥ n.
I If m < n, underdetermined and multiple possible solutions.
I With additional assumptions on x∗,A, it is possible to recover x∗.

Candes-Romberg-Tao 2006: If x∗ is k−sparse in some basis, and A is
Gaussian i.i.d., then m = O (k log n) suffices to recover x∗.
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Generative Models
BigGAN (Brock et al)

Many natural ways to use neural networks

This work will focus on generative models (Goodfellow et al, Kingma
& Welling, Dinh et al).

Want to model a distribution D of images.

Function G : Rk → Rn.

When z ∼ N (0, Ik), then ideally G (z) ∼ D.

Bora-Jalal-Price-Dimakis 2017:
I if G : Rk → Rn is a d−layered ReLU neural network.
I if x∗ lies close to the range of G .
I m = O(kd log n) Gaussian measurements suffice.
I For general L−Lipshitz G , m = O(k log L) suffices.
I Algorithm for recovery MAP / Maximum Likelihood.
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Going beyond k � n

k � n is good for theory, but hurts empirical performance.

Asim-Daniels-Leong-Ahmed-Hand 2020:
invertible neural networks H : Rn → Rn give superior performance.

Existing theory says m = Ω(n) measurements are necessary, but
m� n works in practice.

MSE (Asim et. al. ’20)
Reconstructions(Asim et. al. ’20)
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Our Questions

Question 1

For general distributions, how do we formalize the number of
measurements needed to compress the distribution?

Question 2

Does there exist an algorithm that can recover images using this sample
complexity?
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Theoretical Results
x∗ ∼ R, ‖x∗‖ ≤ r .

See y = Ax∗ + η, with η i.i.d. Gaussian and E[‖η‖2] = ε2.

P: distribution of generative model.

Covε,δ(R) := smallest number of ε-radius balls covering 1− δ of R.

Upper bound + Robustness

If A is Gaussian, and P&R are ε-close in Wasserstein distance, then
x̂ ∼ P(x |y) and m = O(log Covε,δ(R)) gets ‖x∗ − x̂‖ ≤ O(ε) with
probability 1− 3δ.

Lower bound

For arbitrary A, any algorithm that achieves (ε, δ)-recovery requires

m ≥ Ω

Å
log CovCε,Cδ(R)

log(r‖A‖∞/ε)

ã
for some constant C > 0.
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Instance optimality
Existing lower bounds in compressed sensing consider worst-case
distributions.

Typical example: for a uniform distribution over k−sparse vectors in
Rn, you need m = Ω(k log (n/k)) for successful recovery.
Our upper and lower bounds are tight upto constants for any
distribution.

Gaussian measurements are good for any distribution

For any distribution of x∗, if there exists any matrix A and an algorithm
that uses m measurements and achieves
‖x∗ − x ′‖ ≤ ε with probability 1− δ, then posterior sampling with

O
Ä
m log r‖A‖

ε

ä
Gaussian measurements satisfies ‖x∗ − x̂‖ ≤ O(ε) with

probability 1− O(δ).

Sampling + Gaussian measurements is robust to incorrect prior

If x∗ ∼ R but your prior is P 6= R, the guarantee still holds if P and R are
ε-close in Wasserstein distance.
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Experiments - Compressed Sensing
Implement Posterior Sampling via Annealed Langevin Dynamics
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Figure: FFHQ dataset using NCSNv2 model (Song & Ermon 2020).
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Experiments - Inpainting

Original Measurements MAP Langevin_1 Langevin_2 Langevin_3

Figure: CelebA dataset using GLOW model (Kingma & Dhariwal 2018).

MAP estimate is averaged-out, similar to eigenfaces.

Posterior sampling is more realistic & can be sampled multiple times
for diversity.
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Thank you!

Code & models:
https://github.com/ajiljalal/code-cs-fairness

Related paper on fairness: Fairness for Image Generation with
Uncertain Sensitive Attributes (ICML 2021)
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