Instance-Optimal Compressed Sensing via Posterior Sampling

Ajil Jalal Sushrut Karmalkar Alex Dimakis Eric Price

UT Austin

• Want to recover a signal (e.g. an image) from noisy measurements.

Imaging

• Want to recover a signal (e.g. an image) from noisy measurements.

Camera

• Want to recover a signal (e.g. an image) from noisy measurements.

• Linear measurements: see $y = Ax^* + \text{noise}$, for $A \in \mathbb{R}^{m \times n}$.

• Want to recover a signal (e.g. an image) from noisy measurements.

- Linear measurements: see $y = Ax^* + \text{noise}$, for $A \in \mathbb{R}^{m \times n}$.
- How many measurements *m* to recover *x**?

• Want to recover a signal (e.g. an image) from noisy measurements.

- Linear measurements: see $y = Ax^* + \text{noise}$, for $A \in \mathbb{R}^{m \times n}$.
- How many measurements *m* to recover *x**?
- Algorithm to recover *x**?

- Given linear measurements $y = Ax^*$, for $A \in \mathbb{R}^{m \times n}$.
- How many measurements m to learn the signal x^* ?

- Given linear measurements $y = Ax^*$, for $A \in \mathbb{R}^{m \times n}$.
- How many measurements m to learn the signal x^* ?
 - Naively: $m \ge n$.

- Given linear measurements $y = Ax^*$, for $A \in \mathbb{R}^{m \times n}$.
- How many measurements m to learn the signal x^* ?
 - Naively: $m \ge n$.
 - If m < n, underdetermined and multiple possible solutions.

- Given linear measurements $y = Ax^*$, for $A \in \mathbb{R}^{m \times n}$.
- How many measurements m to learn the signal x^* ?
 - Naively: $m \ge n$.
 - If m < n, underdetermined and multiple possible solutions.
 - With additional assumptions on x^* , A, it is possible to recover x^* .

- Given linear measurements $y = Ax^*$, for $A \in \mathbb{R}^{m \times n}$.
- How many measurements m to learn the signal x*?
 - Naively: $m \ge n$.
 - If m < n, underdetermined and multiple possible solutions.
 - ▶ With additional assumptions on *x*^{*}, *A*, it is possible to recover *x*^{*}.
- Candes-Romberg-Tao 2006: If x* is k-sparse in some basis, and A is Gaussian i.i.d., then m = O (k log n) suffices to recover x*.

Generative Models

- Many natural ways to use neural networks
- This work will focus on *generative models* (Goodfellow et al, Kingma & Welling, Dinh et al).
- \bullet Want to model a distribution ${\cal D}$ of images.
- Function $G : \mathbb{R}^k \to \mathbb{R}^n$.
- When $z \sim \mathcal{N}(0, I_k)$, then ideally $G(z) \sim \mathcal{D}$.

Generative Models

- Many natural ways to use neural networks
- This work will focus on *generative models* (Goodfellow et al, Kingma & Welling, Dinh et al).
- ullet Want to model a distribution ${\cal D}$ of images.
- Function $G : \mathbb{R}^k \to \mathbb{R}^n$.
- When $z \sim \mathcal{N}(0, I_k)$, then ideally $G(z) \sim \mathcal{D}$.
- Bora-Jalal-Price-Dimakis 2017:
 - if $G : \mathbb{R}^k \to \mathbb{R}^n$ is a *d*-layered ReLU neural network.
 - if x^* lies close to the range of G.
 - ► m = O(kd log n) Gaussian measurements suffice.
 - For general *L*-Lipshitz *G*, $m = O(k \log L)$ suffices.
 - Algorithm for recovery MAP / Maximum Likelihood.

BigGAN (Brock et al)

• $k \ll n$ is good for theory, but hurts empirical performance.

- $k \ll n$ is good for theory, but hurts empirical performance.
- Asim-Daniels-Leong-Ahmed-Hand 2020: invertible neural networks H : ℝⁿ → ℝⁿ give superior performance.

- $k \ll n$ is good for theory, but hurts empirical performance.
- Asim-Daniels-Leong-Ahmed-Hand 2020: invertible neural networks H : ℝⁿ → ℝⁿ give superior performance.
- Existing theory says $m = \Omega(n)$ measurements are necessary, but $m \ll n$ works in practice.

- $k \ll n$ is good for theory, but hurts empirical performance.
- Asim-Daniels-Leong-Ahmed-Hand 2020: invertible neural networks H : ℝⁿ → ℝⁿ give superior performance.
- Existing theory says m = Ω(n) measurements are necessary, but m ≪ n works in practice.

MSE (Asim et. al. '20)

Reconstructions(Asim et. al. '20)

Our Questions

Question 1

For general distributions, how do we formalize the number of measurements needed to compress the distribution?

Our Questions

Question 1

For general distributions, how do we formalize the number of measurements needed to compress the distribution?

Question 2

Does there exist an algorithm that can recover images using this sample complexity?

•
$$x^* \sim R$$
, $||x^*|| \leq r$.

- $x^* \sim R$, $||x^*|| \leq r$.
- See $y = Ax^* + \eta$, with η i.i.d. Gaussian and $\mathbb{E}[\|\eta\|^2] = \varepsilon^2$.

- $x^* \sim R$, $||x^*|| \leq r$.
- See $y = Ax^* + \eta$, with η i.i.d. Gaussian and $\mathbb{E}[\|\eta\|^2] = \varepsilon^2$.
- *P*: distribution of generative model.

- $x^* \sim R$, $||x^*|| \leq r$.
- See $y = Ax^* + \eta$, with η i.i.d. Gaussian and $\mathbb{E}[\|\eta\|^2] = \varepsilon^2$.
- *P*: distribution of generative model.

 $\operatorname{Cov}_{\varepsilon,\delta}(R) :=$ smallest number of ε -radius balls covering $1 - \delta$ of R.

•
$$x^* \sim R$$
, $||x^*|| \leq r$.

• See $y = Ax^* + \eta$, with η i.i.d. Gaussian and $\mathbb{E}[\|\eta\|^2] = \varepsilon^2$.

• *P*: distribution of generative model.

 $\operatorname{Cov}_{\varepsilon,\delta}(R) :=$ smallest number of ε -radius balls covering $1 - \delta$ of R.

Upper bound + Robustness

If A is Gaussian, and P&R are ε -close in Wasserstein distance, then $\widehat{x} \sim P(x|y)$ and $m = O(\log \operatorname{Cov}_{\varepsilon,\delta}(R))$ gets $||x^* - \widehat{x}|| \le O(\varepsilon)$ with probability $1 - 3\delta$.

•
$$x^* \sim R$$
, $||x^*|| \leq r$.

• See $y = Ax^* + \eta$, with η i.i.d. Gaussian and $\mathbb{E}[\|\eta\|^2] = \varepsilon^2$.

• *P*: distribution of generative model.

 $\operatorname{Cov}_{\varepsilon,\delta}(R) :=$ smallest number of ε -radius balls covering $1 - \delta$ of R.

Upper bound + Robustness

If A is Gaussian, and P&R are ε -close in Wasserstein distance, then $\widehat{x} \sim P(x|y)$ and $m = O(\log \operatorname{Cov}_{\varepsilon,\delta}(R))$ gets $||x^* - \widehat{x}|| \le O(\varepsilon)$ with probability $1 - 3\delta$.

Lower bound

For arbitrary A, any algorithm that achieves (ε, δ) -recovery requires

$$m \geq \Omega\left(rac{\log \operatorname{Cov}_{\mathcal{C}arepsilon, C\delta}(R)}{\log(r\|A\|_{\infty}/arepsilon)}
ight)$$

for some constant C > 0.

Jalal, Karmalkar, Dimakis, Price (UT Austin)

• Existing lower bounds in compressed sensing consider *worst-case* distributions.

- Existing lower bounds in compressed sensing consider *worst-case* distributions.
- Typical example: for a uniform distribution over k-sparse vectors in \mathbb{R}^n , you need $m = \Omega(k \log (n/k))$ for successful recovery.

- Existing lower bounds in compressed sensing consider *worst-case* distributions.
- Typical example: for a uniform distribution over k-sparse vectors in \mathbb{R}^n , you need $m = \Omega(k \log (n/k))$ for successful recovery.
- Our upper and lower bounds are tight upto constants for *any distribution*.

- Existing lower bounds in compressed sensing consider *worst-case* distributions.
- Typical example: for a uniform distribution over k-sparse vectors in \mathbb{R}^n , you need $m = \Omega(k \log (n/k))$ for successful recovery.
- Our upper and lower bounds are tight upto constants for *any distribution*.

Gaussian measurements are good for any distribution

For any distribution of x^* , if there exists any matrix A and an algorithm that uses m measurements and achieves $||x^* - x'|| \le \varepsilon$ with probability $1 - \delta$, then posterior sampling with $O\left(m\log\frac{r||A||}{\varepsilon}\right)$ Gaussian measurements satisfies $||x^* - \hat{x}|| \le O(\varepsilon)$ with probability $1 - O(\delta)$.

- Existing lower bounds in compressed sensing consider *worst-case* distributions.
- Typical example: for a uniform distribution over k-sparse vectors in \mathbb{R}^n , you need $m = \Omega(k \log (n/k))$ for successful recovery.
- Our upper and lower bounds are tight upto constants for *any distribution*.

Gaussian measurements are good for any distribution

For any distribution of x^* , if there exists any matrix A and an algorithm that uses m measurements and achieves $||x^* - x'|| \le \varepsilon$ with probability $1 - \delta$, then posterior sampling with $O\left(m\log\frac{r||A||}{\varepsilon}\right)$ Gaussian measurements satisfies $||x^* - \hat{x}|| \le O(\varepsilon)$ with probability $1 - O(\delta)$.

Sampling + Gaussian measurements is robust to incorrect prior If $x^* \sim R$ but your prior is $P \neq R$, the guarantee still holds if P and R are ε -close in Wasserstein distance.

Jalal, Karmalkar, Dimakis, Price (UT Austin)

Experiments - Compressed Sensing

Implement Posterior Sampling via Annealed Langevin Dynamics

m = 5000

Jalal, Karmalkar, Dimakis, Price (UT Austin)

m=15000

Figure: FFHQ dataset using NCSNv2 model (Song & Ermon 2020). Instance-Optimal Compressed Sensing via Posterior Sampling

m = 75000

m = 196608

Experiments - Inpainting

Original

Measurements

MAP

Langevin 1

Langevin 3

- Figure: CelebA dataset using GLOW model (Kingma & Dhariwal 2018).
- MAP estimate is averaged-out, similar to eigenfaces. 0
- Posterior sampling is more realistic & can be sampled multiple times 0 for diversity.

Thank you!

- Code & models: https://github.com/ajiljalal/code-cs-fairness
- Related paper on fairness: Fairness for Image Generation with Uncertain Sensitive Attributes (ICML 2021)