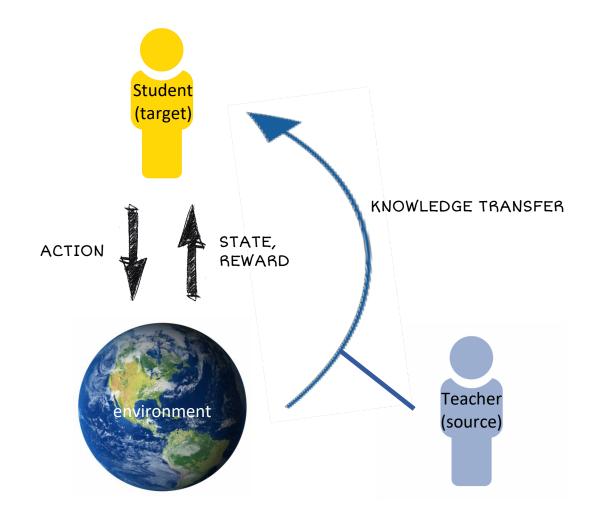
REPAINT: Knowledge Transfer in Deep Reinforcement Learning

Yunzhe Tao, Sahika Genc, Jonathan Chung, Tao Sun, Sunil Mallya

Amazon Web Services

Transfer Learning in RL



Parameter transfer

- [Taylor '08; Mehta '08; Rajendran '15; Gupta '17; etc.]
Representation transfer

- [Konidaris '12; Parisotto '15; Schaul '15; Duan '16; Yin '17; Borsa '18; Zhang '18; Schmitt '18; Ma '18; Barreto '19; etc.]

Instance transfer

- [Lazaric '08; Taylor '08; Tirinzoni '18; etc.]

Our paper:

REPresentation And **IN**stance **T**ransfer (**REPAINT**)

- On-policy representation transfer
- Off-policy instance transfer
- Handles generic cases of source/target task similarity

On-policy Representation Transfer

- Kickstarting Deep RL [Schmitt et al. 2018]
- Allow a student network (target policy) to exploit access to expert teachers:

$$L_{\text{aux}}(\theta) = H(\pi_{\text{teacher}}(a|s)||\pi_{\theta}(a|s))$$
cross-entropy

■ The objective (k is the iteration number):

$$L_{\text{rep}}^{k}(\theta) = L_{\text{RL}}(\theta) - \beta_k L_{\text{aux}}(\theta)$$
RL objective vanishing as k increases

Off-policy Instance Transfer

- Policy distillation works well only when source/target tasks are similar
- Idea: select "good" samples and update policy using those "good" samples
- "good" \approx high advantage estimates $A^{\pi}(s,a) = Q^{\pi}(s,a) V^{\pi}(s)$
- Advantage-based experience selection:
 - 1. Collect trajectories $\{s_i, a_i, s_{i+1}\}$ following **teacher policy** π_{teacher}
 - 2. Compute rewards using current reward function: $\{s_i, a_i, s_{i+1}, \tilde{r}_i\}$
 - 3. Compute advantage estimates $\hat{A}_1, \hat{A}_2, \dots, \hat{A}_T$
 - 4. Remove \hat{A}_t and $\{s_t, a_t, s_{t+1}, \tilde{r}_t\}$ if $\hat{A}_t < \zeta$
 - 5. Update policy using selected samples

Alternative: select top X% samples

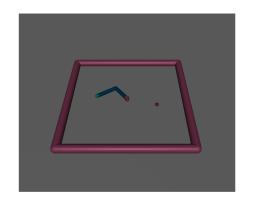
REPAINT Algorithm with Actor-Critic RL

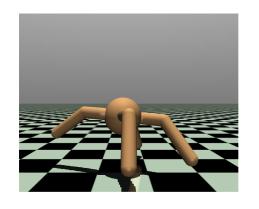
- **1**. Collect $S = \{s, a, s', r\}$ following $\pi_{\theta_{\text{old}}}(\cdot)$
- 2. Collect $\tilde{S} = \{\tilde{s}, \tilde{a}, \tilde{s'}, \tilde{r}\}$ following $\pi_{\text{teacher}}(\cdot)$
- 3. Update critic using S
- 4. Perform advantage-based experience selection on $\tilde{\mathcal{S}}$
- 5. Update actor by:

$$\theta \leftarrow \theta + \alpha_1 \nabla_{\theta} L_{\text{rep}}^k(\theta) + \alpha_2 \nabla_{\theta} L_{\text{ins}}(\theta)$$

$$\text{using } \mathcal{S} \qquad \text{using } \tilde{\mathcal{S}} \qquad \text{off-policy RL objective}$$

Summary of Experimental Results





				•	•				
Env.	Teacher type	Target score	$K_{ m Baseline}$	$K_{\rm KS}$ (pct. reduced)	$K_{\rm IT}$ (pct. reduced)	$K_{ ext{REPAINT}}$ (pct. reduced)	KS	Best sc IT	ores REPAINT
Reacher	similar different	-7.4	173	51 (71%) 73 (58%)	97 (44%) 127 (27%)	42 (76%) 51 (71%)	-5.3 -6.9	-5.9 -6.4	-5.4 -5.2
Ant	similar	3685	997	363 (64%)	623 (38%)	334 (66%)	5464	5172	5540
Single-car	different different	394 345	18 22	Not achieved Not achieved	Not achieved Not achieved	13 (28%) 15 (32%)	331 300	388 319	396 354
Multi-car	sub-task diff/sub-task	1481 2.7	100 77	34 (66%) 66 (14%)	75 (25%) 53 (31%)	29 (71%) 25 (68%)	1542 4.9	1610 4.2	1623 6.1
StarCraft II	sub-task	112	95	92 (3%)	24 (75%)	6 (94%)	125	312	276