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What is this paper about?

e Solving distributionally robust Markov Decision Processes (MDP)

e Distributional robustness with Wasserstein distance

e Goal: improve convergence rate of Value Iteration algorithms



e Main idea: adapt First-Order Methods! (FOMs) for DR-MDP

e Challenges:
- Adapt FOMs to a dynamically changing setting
- Develop tractable proximal updates for interesting metrics/decision

sets

IMirror Descent, Mirror Prox, Primal-Dual Algorithms, etc.



Main complexity results

Consider an MDP with S/A/N states/actions/observed kernels.

Complexity of our algorithm:

O (NA*>S%2log(e™1)e ). (1)
Note: complexity of classical Value lteration:

O (N*°A*55*5log?(e7h)) . (2)

= improvement of Q (N*5AS) ...

. at the price of a worst-dependence in e 1.



Numerical study

Comparing our algorithms with other methods:

e Three MDP instances (two real, one random).

e Other algorithms?: Value Iteration (VI), Gauss-Seidel VI,
Accelerated VI, Anderson VI.

e We compare running times to return e-optimal policy, when S, N
grow larger.

2Puterman (1994), Geist and Scherrer (2018), Goyal and G.-C. (2019)
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Figure 1: Running times of various algorithms (vs. number of kernels N).

@ FOM  d- VI - AVl —m- GSVI —+— Anderson - oM -k W

4 AVI ~. GSVI —4— Anderson ~@- FOM - VI 4= AVI -8 GSVI ~—#— Anderson
* 3000
w - 20
250
Z 60 B 150 Z 2000
£ H H
£ £ S 500
M £00 E
H S0
50
» 500
o o o
10 20 30 40 50 60 70 10 20 30 40 50 60 70 10 20 0 40 50 60 70
number of sates nomber of stoes mimber of ttes

(a) Forest. (b) Machine. (c) Garnet.

Figure 2: Running times of various algorithms (vs. number of states S).




Conclusion

Qur contributions.

e We present the first algorithm adapting FOM to Distributionally
Robust MDP.

e In terms of state/action, we improve complexity to O(NA2-553-%)
from previous O(N3-5A3-5545).

e Empirically, significant speedups on both random and structured
MDP instances, even for small N, S, A.

In the paper:

e More details on Wasserstein setup,
e Details on convergence rate/complexity,

e Detailed simulation setup.



