
First-Order Methods for Wasserstein

Distributionally Robust MDPs

Julien Grand-Clément, Christian Kroer

IEOR Department, Columbia University



What is this paper about?

• Solving distributionally robust Markov Decision Processes (MDP)

• Distributional robustness with Wasserstein distance

• Goal: improve convergence rate of Value Iteration algorithms
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• Main idea: adapt First-Order Methods1 (FOMs) for DR-MDP

• Challenges:

- Adapt FOMs to a dynamically changing setting

- Develop tractable proximal updates for interesting metrics/decision

sets

1Mirror Descent, Mirror Prox, Primal-Dual Algorithms, etc.
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Main complexity results

Consider an MDP with S/A/N states/actions/observed kernels.

Complexity of our algorithm:

O
(
NA2.5S3.5 log(ε−1)ε−1.5

)
. (1)

Note: complexity of classical Value Iteration:

O
(
N3.5A3.5S4.5 log2(ε−1)

)
. (2)

⇒ improvement of Ω
(
N2.5AS

)
...

... at the price of a worst-dependence in ε−1.
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Numerical study

Comparing our algorithms with other methods:

• Three MDP instances (two real, one random).

• Other algorithms2: Value Iteration (VI), Gauss-Seidel VI,

Accelerated VI, Anderson VI.

• We compare running times to return ε-optimal policy, when S ,N

grow larger.

2Puterman (1994), Geist and Scherrer (2018), Goyal and G.-C. (2019)
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Figure 1: Running times of various algorithms (vs. number of kernels N).

10 20 30 40 50 60 70
number of states

0

20

40

60

80

Ru
nn

in
g 

tim
e 

(s
)

FOM VI AVI GS-VI Anderson

(a) Forest.

10 20 30 40 50 60 70
number of states

0

50

100

150

200

Ru
nn

in
g 

tim
e 

(s
)

FOM VI AVI GS-VI Anderson

(b) Machine.

10 20 30 40 50 60 70
number of states

0

500

1000

1500

2000

2500

3000

Ru
nn

in
g 

tim
e 

(s
)

FOM VI AVI GS-VI Anderson

(c) Garnet.

Figure 2: Running times of various algorithms (vs. number of states S).
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Conclusion

Our contributions.

• We present the first algorithm adapting FOM to Distributionally

Robust MDP.

• In terms of state/action, we improve complexity to O(NA2.5S3.5)

from previous O(N3.5A3.5S4.5).

• Empirically, significant speedups on both random and structured

MDP instances, even for small N,S ,A.

In the paper:

• More details on Wasserstein setup,

• Details on convergence rate/complexity,

• Detailed simulation setup.
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