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Background



Motivation

• Estimating the conditional expectation function µ(·) = E(Y |·) under a
regression model,

yi = µ(xi ) + εi , i = 1, . . . , n, (n > d), (1)

where xi is a d-dimensional feature point in Rd , yi ∈ R is the observed

response, ε1, . . . , εn ∈ R are i.i.d. random errors with E(εi ) = 0 and

E(ε2i ) <∞.

• Existing nonparametric methods: k-nearest neighbor, kernel regression,

local linear regression, regression tree, random forest.

- Advantages: Model-free; Robust in interpolation.

- Disadvantage: Sensitive to the data density of xi s

Figure 1: Neighbor data points of the target point z computed by the
k-NN regression with k = 5, 10, 15, 20. 1



Delaunay Interpolation: Delaunay Triangulation

• Let X = {x1, . . . , xn} ⊂ Rd . A triangulation of X is a mesh of disjoint

d-simplices {S1, . . . ,Sm} which fully cover the convex hull of X, H(X).

• Among all triangulations, the Delaunay triangulation is widely used for

multivariate interpolation (de Berg et al., 2008) due to its smoothness.

• Let Bj be the open ball whose boundary is the circumscribed sphere of Sj . The

Delaunay triangulation of X, denoted as DT (X), is any triangulation of X such

that Bj ∩ X = ∅ for j = 1, . . . ,m. (Empty-ball property)

(a) (b)

Figure 2: (a) Graphical illustration of the empty-ball property of the Delaunay
triangulation; (b) the Delaunay triangulation.
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Delaunay Interpolation: Estimation

• Consider the data {(xi , yi ) : i = 1, . . . , n} from model (1), the Delaunay

interpolation estimates the conditional expectation µ(z) for all z ∈ H(X)

in three steps:

1. Construct the Delaunay triangulation DT (X);

2. Find the simplex S(z) ∈ DT (X) such that z ∈ S(z);

3. Obtain the estimator µ̂(z).

• Let i1(z), . . . , id+1(z) denote the indices corresponding to the data points
of S(z). With γ1, . . . , γd+1 ∈ [0, 1] such that

∑d+1
k=1 γkxik (z) = z and∑d+1

k=1 γk = 1, the estimator of de Berg et al. (2008) is

µ̂(z) =
d+1∑
k=1

γkyik (z).

• However, the above approach requires a complete construction of

DT (X), whose size grows exponentially with the dimension d . As a

result, no existing algorithm is feasible when d > 7 due to the limitations

of computation time/power and memory space.
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Delaunay Interpolation: DELAUNAYSPARSE Algorithm

• Recently, Chang et al. (2020) developed the
DELAUNAYSPARSE algorithm to find S(z) for all z ∈ H(X).

1. Obtaining a seed Delaunay simplex Sseed close to z;
2. Growing neighbor Delaunay simplices of the explored ones in

the direction of z recursively;
3. Using the breadth first search to find S(z).

Figure 3: Graphical illustration of the DELAUNAYSPARSE
algorithm.
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Methodology



Crystallization Search for Delaunay Simplices

• Inspired by the DELAUNAYSPARSE algorithm, we develop the

crystallization search to construct all the Delaunay simplices within

the topological distance L to S(z), denoted as NL(z).

(Computational Complexity: O(dLn))

(a) (b)

Figure 4: Crystallization search of NL(z) with respect to a target
point z ∈ H(X) and L = 0, 1, 2 (top row), L = 3, 4, 5 (bottom row)
in R2 (a) and R3 (b).
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Crystallization Learning

• Let Vz,L = ∪S∈NL(z)V(S) denote the set of all the data points of the

simplices in NL(z). We propose the crystallization learning to estimate

µ(z) by fitting a local linear model, µ(z) = α + βTz, to all the data

points in Vz,L instead of only the d + 1 data points of S(z).

• We estimate α and β via the weighted least squares approach,

(α̂, β̂) = arg min
∑

xi∈Vz,L

wz,L(xi )(yi − α− βTxi )
2,

where wz,L(xi ) is larger if xi is closer to the target point z and shared by

more simplices of NL(z).

• As a small L leads to overfitting and a large L makes µ̂(·) overly smooth,

we propose adapting the leave-one-out cross validation (LOO-CV) to

select L with respect to the target point z
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Connection with Other Nonparametric Regression Methods

• Similar to existing nonparametric regression methods, our crystallization

learning consists of three steps in estimating the conditional expectation

µ(z):

1. Selecting data points from X as the neighbors of z according to a

specific criterion;

2. Assigning weights to the selected neighbor data points;

3. Fitting a local model to the selected neighbor data points.

• Since our crystallization learning and the existing methods mainly differ in

the first two steps, we compare our crystallization learning with the

k-nearest neighbor (k-NN) regression and the local linear regression in the

computation of neighbor data points. We use the Euclidean distance in

the k-NN regression and the Gaussian kernel in the local linear regression.

7



Connection with Other Nonparametric Regression Methods

Figure 5: Neighbor data points of the target point z computed by the
crystallization learning with L = 0, 1, 2, 3.

(a) Crystallization (b) k-NN (c) Local linear

Figure 6: Kernel density estimates of distributions of the directions from the
target point z to its neighbor data points using different methods with different
hyperparameter values. The arrow indicates the direction from the target point
z to the sample mean of X. 8



Connection with Other Nonparametric Regression Methods

Figure 7: Paths of the (weighted) means of neighbor data points by
different methods as the value of the hyperparameter increases.
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Experiments



Experiments

• We conduct experiments on synthetic data under two different scenarios

(general internal points of H(X), or jump points of the feature data

density):

1. to illustrate the effectiveness of the crystallization learning in

estimating the conditional expectation function µ(·);

2. to evaluate the estimation accuracy of our approach in comparison

with existing nonparametric regression methods, including the k-NN

regression using the Euclidean distance, local linear regression using

Gaussian kernel, multivariate kernel regression using Gaussian kernel

(Hein, 2009) and Gaussian process models.
• We use the mean squared error (MSE) under the method M,

MSEM =
1

100

100∑
k=1

{µ̂M(zk)− µ(zk)}2,

to evaluate the accuracy of the estimator µ̂M(·) at the target points

z1, . . . , z100 ∈ H(X)..

• We also apply our method to real data to investigate its empirical

performance.
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Experiments on Synthetic Data
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Experiments on Real Data

• We apply the crystallization learning to several real datasets
from the UCI repository.

1. The CASP dataset (Betancourt and Skolnick, 2001);
2. The Concrete dataset (Yeh, 1998);
3. The Parkinson’s telemonitoring dataset (Tsanas et al., 2010)

for the motor and total UPDRS scores.

• For each dataset, we take 100 bootstrap samples without
replacement of size n (n = 200, 500, 1000 or 2000) for
training and 100 bootstrap samples of size 100 for testing.

• Based on the testing set, we quantify the performance of the
method M by the mean predictive squared error (MPSE),

MPSEM =
1

100

100∑
k=1

{µ̂M(zk)− yk}2,

where yk ’s are responses corresponding to zk ’s.
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Experiments on Real Data

(a) CASP dataset (b) Concrete dataset

(c) Parkinson’s motor UPDRS (d) Parkinson’s total UPDRS

Figure 8: Boxplots of log(MPSEM/MPSECL) corresponding to existing
methods in estimating µ(·) under different datasets and sizes of the training set
(n). 13



Experiments on L selection

We conduct experiments to validate the proposed procedure of L
selection, which suggests the effectiveness of our LOO-CV
procedure in improving the estimation accuracy.

(a) n = 200 (b) n = 500 (c) n = 1000 (d) n = 2000

Figure 9: Averaged values of log(MSEL)− log(MSE) (L = 1, . . . , 8) and
log(MSEL̃)− log(MSE) under different sample sizes (n), where MSEL is
the MSE using the hyperparameter L and
log(MSE) =

∑8
L=1 log(MSEL)/8.
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End

Thank you for listening.
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