Crystallization Learning with the Delaunay Triangulation

Gu Jiaqi

Co-work with Prof. Guosheng Yin

Department of Statistics and Actuarial Science, The University of Hong Kong

Background

Motivation

• Estimating the conditional expectation function $\mu(\cdot) = E(Y|\cdot)$ under a regression model,

$$y_i = \mu(\mathbf{x}_i) + \epsilon_i, \quad i = 1, \dots, n, \quad (n > d),$$
 (1)

where \mathbf{x}_i is a d-dimensional feature point in \mathscr{R}^d , $y_i \in \mathscr{R}$ is the observed response, $\epsilon_1, \ldots, \epsilon_n \in \mathscr{R}$ are i.i.d. random errors with $E(\epsilon_i) = 0$ and $E(\epsilon_i^2) < \infty$.

- Existing nonparametric methods: *k*-nearest neighbor, kernel regression, local linear regression, regression tree, random forest.
 - Advantages: Model-free; Robust in interpolation.
 - Disadvantage: Sensitive to the data density of x_i s

Figure 1: Neighbor data points of the target point **z** computed by the k-NN regression with k = 5, 10, 15, 20.

Delaunay Interpolation: Delaunay Triangulation

- Let X = {x₁,...,x_n} ⊂ R^d. A triangulation of X is a mesh of disjoint
 d-simplices {S₁,...,S_m} which fully cover the convex hull of X, H(X).
- Among all triangulations, the Delaunay triangulation is widely used for multivariate interpolation (de Berg et al., 2008) due to its smoothness.
- Let \mathcal{B}_j be the open ball whose boundary is the circumscribed sphere of \mathcal{S}_j . The Delaunay triangulation of \mathbb{X} , denoted as $\mathcal{DT}(\mathbb{X})$, is any triangulation of \mathbb{X} such that $\mathcal{B}_j \cap \mathbb{X} = \emptyset$ for $j = 1, \ldots, m$. (Empty-ball property)

Figure 2: (a) Graphical illustration of the empty-ball property of the Delaunay triangulation; (b) the Delaunay triangulation.

Delaunay Interpolation: Estimation

- Consider the data $\{(\mathbf{x}_i, y_i) : i = 1, ..., n\}$ from model (1), the Delaunay interpolation estimates the conditional expectation $\mu(\mathbf{z})$ for all $\mathbf{z} \in \mathcal{H}(\mathbb{X})$ in three steps:
 - 1. Construct the Delaunay triangulation $\mathcal{DT}(X)$;
 - 2. Find the simplex $S(z) \in \mathcal{DT}(X)$ such that $z \in S(z)$;
 - 3. Obtain the estimator $\hat{\mu}(\mathbf{z})$.
- Let $i_1(\mathbf{z}), \dots, i_{d+1}(\mathbf{z})$ denote the indices corresponding to the data points of $\mathcal{S}(\mathbf{z})$. With $\gamma_1, \dots, \gamma_{d+1} \in [0,1]$ such that $\sum_{k=1}^{d+1} \gamma_k \mathbf{x}_{i_k(\mathbf{z})} = \mathbf{z}$ and $\sum_{k=1}^{d+1} \gamma_k = 1$, the estimator of de Berg et al. (2008) is

$$\hat{\mu}(\mathbf{z}) = \sum_{k=1}^{d+1} \gamma_k y_{i_k(\mathbf{z})}.$$

• However, the above approach requires a complete construction of $\mathcal{DT}(\mathbb{X})$, whose size grows exponentially with the dimension d. As a result, no existing algorithm is feasible when d>7 due to the limitations of computation time/power and memory space.

Delaunay Interpolation: DELAUNAYSPARSE Algorithm

- Recently, Chang et al. (2020) developed the DELAUNAYSPARSE algorithm to find S(z) for all $z \in \mathcal{H}(X)$.
 - 1. Obtaining a seed Delaunay simplex $\mathcal{S}_{\text{seed}}$ close to $\boldsymbol{z};$
 - 2. Growing neighbor Delaunay simplices of the explored ones in the direction of **z** recursively;
 - 3. Using the breadth first search to find S(z).

Figure 3: Graphical illustration of the DELAUNAYSPARSE algorithm.

Methodology

Crystallization Search for Delaunay Simplices

• Inspired by the DELAUNAYSPARSE algorithm, we develop the crystallization search to construct all the Delaunay simplices within the topological distance L to $\mathcal{S}(\mathbf{z})$, denoted as $\mathcal{N}_L(\mathbf{z})$. (Computational Complexity: $\mathcal{O}(d^L n)$)

Figure 4: Crystallization search of $\mathcal{N}_L(\mathbf{z})$ with respect to a target point $\mathbf{z} \in \mathcal{H}(\mathbb{X})$ and L = 0, 1, 2 (top row), L = 3, 4, 5 (bottom row) in \mathscr{R}^2 (a) and \mathscr{R}^3 (b).

Crystallization Learning

- Let $\mathbb{V}_{\mathbf{z},L} = \cup_{\mathcal{S} \in \mathcal{N}_L(\mathbf{z})} \mathbb{V}(\mathcal{S})$ denote the set of all the data points of the simplices in $\mathcal{N}_L(\mathbf{z})$. We propose the crystallization learning to estimate $\mu(\mathbf{z})$ by fitting a local linear model, $\mu(\mathbf{z}) = \alpha + \boldsymbol{\beta}^\mathsf{T} \mathbf{z}$, to all the data points in $\mathbb{V}_{\mathbf{z},L}$ instead of only the d+1 data points of $\mathcal{S}(\mathbf{z})$.
- We estimate α and β via the weighted least squares approach,

$$(\hat{\alpha}, \hat{\boldsymbol{\beta}}) = \arg\min \sum_{\mathbf{x}_i \in \mathbb{V}_{\mathbf{z}, L}} w_{\mathbf{z}, L}(\mathbf{x}_i) (y_i - \alpha - \boldsymbol{\beta}^\mathsf{T} \mathbf{x}_i)^2,$$

where $w_{z,L}(\mathbf{x}_i)$ is larger if \mathbf{x}_i is closer to the target point \mathbf{z} and shared by more simplices of $\mathcal{N}_L(\mathbf{z})$.

• As a small L leads to overfitting and a large L makes $\hat{\mu}(\cdot)$ overly smooth, we propose adapting the leave-one-out cross validation (LOO-CV) to select L with respect to the target point \mathbf{z}

6

Connection with Other Nonparametric Regression Methods

- Similar to existing nonparametric regression methods, our crystallization learning consists of three steps in estimating the conditional expectation $\mu(\mathbf{z})$:
 - Selecting data points from X as the neighbors of z according to a specific criterion;
 - 2. Assigning weights to the selected neighbor data points;
 - 3. Fitting a local model to the selected neighbor data points.
- Since our crystallization learning and the existing methods mainly differ in
 the first two steps, we compare our crystallization learning with the
 k-nearest neighbor (k-NN) regression and the local linear regression in the
 computation of neighbor data points. We use the Euclidean distance in
 the k-NN regression and the Gaussian kernel in the local linear regression.

Connection with Other Nonparametric Regression Methods

Figure 5: Neighbor data points of the target point **z** computed by the crystallization learning with L = 0, 1, 2, 3.

Figure 6: Kernel density estimates of distributions of the directions from the target point z to its neighbor data points using different methods with different hyperparameter values. The arrow indicates the direction from the target point z to the sample mean of \mathbb{X} .

Connection with Other Nonparametric Regression Methods

Figure 7: Paths of the (weighted) means of neighbor data points by different methods as the value of the hyperparameter increases.

Experiments

Experiments

- We conduct experiments on synthetic data under two different scenarios (general internal points of $\mathcal{H}(\mathbb{X})$, or jump points of the feature data density):
 - 1. to illustrate the effectiveness of the crystallization learning in estimating the conditional expectation function $\mu(\cdot)$;
 - to evaluate the estimation accuracy of our approach in comparison with existing nonparametric regression methods, including the k-NN regression using the Euclidean distance, local linear regression using Gaussian kernel, multivariate kernel regression using Gaussian kernel (Hein, 2009) and Gaussian process models.
- ullet We use the mean squared error (MSE) under the method ${\cal M},$

$$MSE_{\mathcal{M}} = \frac{1}{100} \sum_{k=1}^{100} {\{\hat{\mu}_{\mathcal{M}}(\mathbf{z}_k) - \mu(\mathbf{z}_k)\}^2},$$

to evaluate the accuracy of the estimator $\hat{\mu}_{\mathcal{M}}(\cdot)$ at the target points $\mathbf{z}_1, \dots, \mathbf{z}_{100} \in \mathcal{H}(\mathbb{X})$.

 We also apply our method to real data to investigate its empirical performance.

Experiments on Synthetic Data

Table 2. Averaged values of $\log(MSE)$ and standard deviations in parentheses using crystallization learning (CL) in comparison with k-NN (k = 5, 10, k*, where k* equals the size of $V_{k,L}$), local linear (LL) regression, kernel regression (KR) and Gaussian process (GP) in estimating μ () under two scenarios, different sample sizes (n) and different dimensions of the feature space (d).

d	n	$\log(MSE_{CL})$	$\log\left(\frac{MSE_{5-NN}}{MSE_{CL}}\right)$	$\log \left(\frac{MSE_{10-NN}}{MSE_{CL}} \right)$	$\log \left(\frac{MSE_{k^*-NN}}{MSE_{CL}} \right)$	$\log \left(\frac{MSE_{LL}}{MSE_{CL}} \right)$	$\log \left(\frac{MSE_{KR}}{MSE_{CL}} \right)$	$\log\left(\frac{\text{MSE}_{GP}}{\text{MSE}_{CL}}\right)$
Scenario 1 (General internal points)								
5	200	-1.11(0.21)	0.23(0.09)	0.12(0.09)	0.33(0.11)	0.56(0.11)	0.57(0.11)	0.24(0.18)
	500	-2.13(0.18)	0.55(0.13)	0.37(0.11)	0.45(0.13)	0.91(0.17)	0.94(0.17)	0.76(0.18)
	1000	-2.04(0.18)	0.53(0.13)	0.42(0.13)	0.62(0.12)	1.18(0.19)	1.22(0.19)	0.41(0.20)
	2000	-2.21(0.20)	0.48(0.14)	0.38(0.14)	0.59(0.16)	1.06(0.22)	1.08(0.21)	0.81(0.17)
10	200	-0.03(0.16)	0.28(0.09)	0.13(0.07)	0.14(0.08)	0.10(0.07)	0.12(0.07)	-0.08(0.14)
	500	0.01(0.21)	0.43(0.13)	0.31(0.10)	0.29(0.11)	0.47(0.12)	0.47(0.12)	-0.01(0.17)
	1000	-0.50(0.22)	0.37(0.14)	0.30(0.12)	0.43(0.10)	0.54(0.12)	0.53(0.12)	-0.09(0.21)
	2000	-0.67(0.20)	0.42(0.13)	0.33(0.12)	0.51(0.11)	0.59(0.16)	0.60(0.16)	0.10(0.14)
20	200	1.46(0.14)	0.14(0.08)	-0.02(0.06)	-0.01(0.06)	-0.02(0.03)	-0.04(0.06)	0.17(0.15)
	500	1.09(0.15)	0.25(0.10)	0.11(0.07)	-0.01(0.07)	-0.07(0.06)	-0.03(0.06)	-0.18(0.16)
20	1000	0.92(0.18)	0.48(0.11)	0.36(0.10)	0.00(0.11)	-0.10(0.08)	-0.02(0.08)	0.22(0.18)
	2000	0.73(0.22)	0.24(0.15)	0.24(0.12)	0.06(0.11)	0.18(0.11)	0.14(0.11)	0.15(0.19)
50	500	2.47(0.14)	0.08(0.09)	-0.02(0.07)	0.02(0.05)	-0.01(0.03)	-0.08(0.11)	0.06(0.19)
	1000	2.32(0.17)	0.08(0.12)	-0.02(0.10)	0.04(0.06)	-0.03(0.03)	-0.13(0.12)	-0.22(0.18)
	2000	2.12(0.17)	0.17(0.13)	0.18(0.10)	-0.01(0.06)	0.02(0.04)	0.00(0.11)	-0.08(0.19)
Scenario 2 (Jump points of the feature data density)								
5	200	-0.72(0.17)	0.34(0.05)	0.33(0.04)	0.51(0.06)	0.60(0.07)	0.70(0.07)	0.32(0.10)
	500	-1.46(0.15)	0.42(0.05)	0.31(0.05)	0.44(0.06)	0.92(0.09)	1.03(0.09)	0.59(0.11)
3	1000	-1.94(0.13)	0.48(0.06)	0.21(0.05)	0.33(0.07)	0.99(0.10)	1.11(0.10)	0.92(0.11)
	2000	-1.87(0.17)	0.46(0.05)	0.26(0.05)	0.33(0.06)	1.43(0.11)	1.53(0.11)	1.10(0.11)
10	200	0.59(0.12)	0.08(0.05)	0.03(0.04)	0.17(0.04)	0.09(0.03)	0.13(0.03)	0.14(0.09)
	500	0.44(0.14)	0.18(0.04)	0.08(0.04)	0.05(0.04)	0.09(0.04)	0.15(0.04)	-0.07(0.08)
	1000	0.27(0.11)	0.18(0.05)	0.11(0.04)	0.18(0.04)	0.29(0.05)	0.38(0.05)	-0.11(0.07)
	2000	0.02(0.13)	0.23(0.04)	0.11(0.04)	0.17(0.04)	0.43(0.05)	0.49(0.05)	-0.12(0.07)
20	200	1.92(0.12)	0.08(0.04)	0.03(0.03)	0.02(0.02)	-0.01(0.01)	-0.04(0.03)	0.04(0.07)
	500	1.77(0.10)	0.14(0.05)	0.01(0.03)	-0.02(0.03)	-0.01(0.04)	-0.02(0.02)	-0.07(0.07)
	1000	1.68(0.13)	0.08(0.05)	0.02(0.03)	-0.05(0.03)	-0.04(0.02)	-0.03(0.03)	-0.09(0.06)
	2000	1.50(0.12)	0.11(0.05)	0.06(0.03)	0.08(0.03)	0.02(0.02)	0.09(0.03)	-0.11(0.07)
50	500	2.85(0.09)	0.16(0.06)	0.05(0.04)	-0.01(0.04)	0.09(0.03)	0.14(0.06)	-0.04(0.08)
	1000	2.90(0.09)	0.20(0.05)	0.08(0.04)	-0.03(0.02)	0.03(0.02)	0.19(0.06)	-0.10(0.07)
	2000	2.82(0.10)	0.15(0.04)	0.08(0.03)	-0.01(0.01)	-0.01(0.01)	0.10(0.04)	-0.12(0.07)

Experiments on Real Data

- We apply the crystallization learning to several real datasets from the UCI repository.
 - 1. The CASP dataset (Betancourt and Skolnick, 2001);
 - 2. The Concrete dataset (Yeh, 1998);
 - The Parkinson's telemonitoring dataset (Tsanas et al., 2010) for the motor and total UPDRS scores.
- For each dataset, we take 100 bootstrap samples without replacement of size n (n = 200, 500, 1000 or 2000) for training and 100 bootstrap samples of size 100 for testing.
- Based on the testing set, we quantify the performance of the method M by the mean predictive squared error (MPSE),

$$MPSE_{\mathcal{M}} = \frac{1}{100} \sum_{k=1}^{100} {\{\hat{\mu}_{\mathcal{M}}(\mathbf{z}_k) - y_k\}^2},$$

where y_k 's are responses corresponding to \mathbf{z}_k 's.

Experiments on Real Data

Figure 8: Boxplots of $\log(\mathsf{MPSE}_{\mathcal{M}}/\mathsf{MPSE}_{\mathsf{CL}})$ corresponding to existing methods in estimating $\mu(\cdot)$ under different datasets and sizes of the training set (n).

Experiments on *L* **selection**

We conduct experiments to validate the proposed procedure of *L* selection, which suggests the effectiveness of our LOO-CV procedure in improving the estimation accuracy.

Figure 9: Averaged values of $\log(\text{MSE}_L) - \overline{\log(\text{MSE})}$ (L = 1, ..., 8) and $\log(\text{MSE}_{\widetilde{L}}) - \overline{\log(\text{MSE})}$ under different sample sizes (n), where MSE_L is the MSE using the hyperparameter L and $\overline{\log(\text{MSE})} = \sum_{L=1}^8 \log(\text{MSE}_L)/8$.

References

- Betancourt, M. R. and Skolnick, J. (2001). Universal similarity measure for comparing protein structures. *Biopolymers*, 59(5):305–309.
- Chang, T. H., Watson, L. T., Lux, T. C. H., Butt, A. R., Cameron, K. W., and Hong, Y. (2020). Algorithm 1012: DELAUNAYSPARSE: Interpolation via a sparse subset of the Delaunay triangulation in medium to high dimensions. ACM Transactions on Mathematical Software, 46(4):1–20.
- de Berg, M., Cheong, O., van Kreveld, M., and Overmars, M. (2008). Delaunay triangulations. In *Computational Geometry*, pages 191–218. Springer Berlin Heidelberg.
- Hein, M. (2009). Robust nonparametric regression with metric-space valued output. In Advances in Neural Information Processing Systems, volume 22. Curran Associates, Inc.
- Tsanas, A., Little, M., McSharry, P., and Ramig, L. (2010). Accurate telemonitoring of Parkinson's disease progression by noninvasive speech tests. *IEEE Transactions on Biomedical Engineering*, 57(4):884–893.
- Yeh, I.-C. (1998). Modeling of strength of high-performance concrete using artificial neural networks. Cement and Concrete Research, 28(12):1797–1808.

End

Thank you for listening.