Near-Optimal Linear Regression under Distribution Shift

Qi Lei

Princeton University

Joint work with Wei Hu and Jason Lee.

- Observations: $y_i = f_S(\boldsymbol{x}_i) + \text{noise}, \boldsymbol{x}_i \sim p_S, i = 1, 2, \cdots n_S$
- Estimate a linear model $\hat{oldsymbol{eta}}((oldsymbol{x}_i,y_i)_{i=1}^{n_S})$
- ullet Tested on: $\mathbb{E}_{oldsymbol{x} \sim p_T}[\|f_T(oldsymbol{x}) \hat{oldsymbol{eta}}^ op oldsymbol{x}\|^2]$
- Covariate shift: $f_S = f_T, p_S \neq p_T$
- Model shift: $f_S \neq f_T$ linear, $p_S \neq p_T$

- Observations: $y_i = f_S(\boldsymbol{x}_i) + \text{noise}, \boldsymbol{x}_i \sim p_S, i = 1, 2, \cdots n_S$
- Estimate a linear model $\hat{oldsymbol{eta}}((oldsymbol{x}_i,y_i)_{i=1}^{n_S})$
- ullet Tested on: $\mathbb{E}_{oldsymbol{x} \sim p_T}[\|f_T(oldsymbol{x}) \hat{oldsymbol{eta}}^ op oldsymbol{x}\|^2]$
- Covariate shift: $f_S = f_T, p_S \neq p_T$
- Model shift: $f_S \neq f_T$ linear, $p_S \neq p_T$

- Observations: $y_i = f_S(\boldsymbol{x}_i) + \text{noise}, \boldsymbol{x}_i \sim p_S, i = 1, 2, \cdots n_S$
- Estimate a linear model $\hat{oldsymbol{eta}}((oldsymbol{x}_i,y_i)_{i=1}^{n_S})$
- ullet Tested on: $\mathbb{E}_{oldsymbol{x} \sim p_T}[\|f_T(oldsymbol{x}) \hat{oldsymbol{eta}}^ op oldsymbol{x}\|^2]$
- Covariate shift: $f_S = f_T, p_S \neq p_T$
- Model shift: $f_S \neq f_T$ linear, $p_S \neq p_T$

- Observations: $y_i = f_S(\boldsymbol{x}_i) + \text{noise}, \boldsymbol{x}_i \sim p_S, i = 1, 2, \cdots n_S$
- Estimate a linear model $\hat{oldsymbol{eta}}((oldsymbol{x}_i,y_i)_{i=1}^{n_S})$
- ullet Tested on: $\mathbb{E}_{oldsymbol{x} \sim p_T}[\|f_T(oldsymbol{x}) \hat{oldsymbol{eta}}^ op oldsymbol{x}\|^2]$
- Covariate shift: $f_S = f_T, p_S \neq p_T$
- Model shift: $f_S \neq f_T$ linear, $p_S \neq p_T$

- Observations: $y_i = f_S(\boldsymbol{x}_i) + \text{noise}, \boldsymbol{x}_i \sim p_S, i = 1, 2, \cdots n_S$
- Estimate a linear model $\hat{oldsymbol{eta}}((oldsymbol{x}_i,y_i)_{i=1}^{n_S})$
- ullet Tested on: $\mathbb{E}_{oldsymbol{x} \sim p_T}[\|f_T(oldsymbol{x}) \hat{oldsymbol{eta}}^ op oldsymbol{x}\|^2]$
- Covariate shift: $f_S = f_T, p_S \neq p_T$
- Model shift: $f_S \neq f_T$ linear, $p_S \neq p_T$

- ullet Observations: $y_i = f_S(oldsymbol{x}_i) + ext{noise}, oldsymbol{x}_i \sim p_S, i = 1, 2, \cdots n_S$
- Estimate a linear model $\hat{oldsymbol{eta}}((oldsymbol{x}_i,y_i)_{i=1}^{n_S})$
- ullet Tested on: $\mathbb{E}_{oldsymbol{x} \sim p_T}[\|f_T(oldsymbol{x}) \hat{oldsymbol{eta}}^ op oldsymbol{x}\|^2]$
- Covariate shift: $f_S = f_T, p_S \neq p_T$
- Model shift: $f_S \neq f_T$ linear, $p_S \neq p_T$

- ullet Observations: $y_i = f_S(oldsymbol{x}_i) + ext{noise}, oldsymbol{x}_i \sim p_S, i = 1, 2, \cdots n_S$
- Estimate a linear model $\hat{oldsymbol{eta}}((oldsymbol{x}_i,y_i)_{i=1}^{n_S})$
- ullet Tested on: $\mathbb{E}_{oldsymbol{x} \sim p_T}[\|f_T(oldsymbol{x}) \hat{oldsymbol{eta}}^ op oldsymbol{x}\|^2]$
- Covariate shift: $f_S = f_T, p_S \neq p_T$
- Model shift: $f_S \neq f_T$ linear, $p_S \neq p_T$

Ridge Regression as MAP Inference

$$\hat{\boldsymbol{\beta}}_{\mathsf{RR}} \leftarrow \operatorname*{arg\,min}_{\boldsymbol{\beta}} \frac{1}{n_S} \sum_{i=1}^{n_S} (\boldsymbol{\beta}^{\top} \boldsymbol{x}_i - y_i)^2 + \frac{\lambda}{2} \|\boldsymbol{\beta}\|^2 \tag{1}$$

- assuming $y \sim \mathcal{N}(\boldsymbol{x}^{\top}\boldsymbol{\beta}^*, \sigma^2)$,
- ullet measured on source distribution $oldsymbol{x} \sim p_S$,
- with Gaussian prior $\beta^* \sim \mathcal{N}(0, r^2 I)$.

Ridge Regression as MAP Inference

$$\hat{\boldsymbol{\beta}}_{\mathsf{RR}} \leftarrow \operatorname*{arg\,min}_{\boldsymbol{\beta}} \frac{1}{n_S} \sum_{i=1}^{n_S} (\boldsymbol{\beta}^{\top} \boldsymbol{x}_i - y_i)^2 + \frac{\lambda}{2} \|\boldsymbol{\beta}\|^2 \tag{1}$$

← This is the optimal linear estimator

- assuming $y \sim \mathcal{N}(x^{\top} \boldsymbol{\beta}^*, \sigma^2)$,
- ullet measured on source distribution $oldsymbol{x} \sim p_S$,
- with Gaussian prior $\beta^* \sim \mathcal{N}(0, r^2 I)$. ^a

^aSee e.g. Murphy, K. P. (2012). Machine learning: a probabilistic perspective

Ridge Regression as MAP Inference

$$\hat{\boldsymbol{\beta}}_{\mathsf{RR}} \leftarrow \operatorname*{arg\,min}_{\boldsymbol{\beta}} \frac{1}{n_S} \sum_{i=1}^{n_S} (\boldsymbol{\beta}^{\top} \boldsymbol{x}_i - y_i)^2 + \frac{\lambda}{2} \|\boldsymbol{\beta}\|^2 \tag{1}$$

 \leftarrow This is the optimal linear estimator

- ullet assuming $y \sim \mathcal{N}(oldsymbol{x}^{ op}oldsymbol{eta}^*, \sigma^2)$,
- measured on source distribution $x \sim p_S$,
- with Gaussian prior $\beta^* \sim \mathcal{N}(0, r^2 I)$. ^a

^aSee e.g. Murphy, K. P. (2012). Machine learning: a probabilistic perspective

Ridge Regression as MAP Inference

$$\hat{\boldsymbol{\beta}}_{\mathsf{RR}} \leftarrow \operatorname*{arg\,min}_{\boldsymbol{\beta}} \frac{1}{n_S} \sum_{i=1}^{n_S} (\boldsymbol{\beta}^{\top} \boldsymbol{x}_i - y_i)^2 + \frac{\lambda}{2} \|\boldsymbol{\beta}\|^2 \tag{1}$$

 \leftarrow This is the optimal linear estimator

- assuming $y \sim \mathcal{N}(\boldsymbol{x}^{\top}\boldsymbol{\beta}^*, \sigma^2)$,
- measured on source distribution $x \sim p_S$,
- with Gaussian prior $\beta^* \sim \mathcal{N}(0, r^2 I)$. ^a

^aSee e.g. Murphy, K. P. (2012). Machine learning: a probabilistic perspective

Ridge Regression as MAP Inference

$$\hat{\boldsymbol{\beta}}_{\mathsf{RR}} \leftarrow \operatorname*{arg\,min}_{\boldsymbol{\beta}} \frac{1}{n_S} \sum_{i=1}^{n_S} (\boldsymbol{\beta}^{\top} \boldsymbol{x}_i - y_i)^2 + \frac{\lambda}{2} \|\boldsymbol{\beta}\|^2 \tag{1}$$

← This is the optimal linear estimator

- assuming $y \sim \mathcal{N}(\boldsymbol{x}^{\top}\boldsymbol{\beta}^*, \sigma^2)$,
- measured on source distribution ${m x} \sim p_S$,
- with Gaussian prior $\beta^* \sim \mathcal{N}(0, r^2 I)$.

How to adapt to the target domain?

 $^{^{}a}$ See e.g. Murphy, K. P. (2012). Machine learning: a probabilistic perspective

Ridge Regression as MAP Inference

$$\hat{\boldsymbol{\beta}}_{\mathsf{RR}} \leftarrow \operatorname*{arg\,min}_{\boldsymbol{\beta}} \frac{1}{n_S} \sum_{i=1}^{n_S} (\boldsymbol{\beta}^{\top} \boldsymbol{x}_i - y_i)^2 + \frac{\lambda}{2} \|\boldsymbol{\beta}\|^2 \tag{1}$$

← This is the optimal linear estimator

- assuming $y \sim \mathcal{N}(\boldsymbol{x}^{\top}\boldsymbol{\beta}^*, \sigma^2)$,
- measured on source distribution $x \sim p_S$,
- with Gaussian prior $\beta^* \sim \mathcal{N}(0, r^2 I)$.

Ridge Regression as MAP Inference

$$\hat{\boldsymbol{\beta}}_{\mathsf{RR}} \leftarrow \operatorname*{arg\,min}_{\boldsymbol{\beta}} \frac{1}{n_S} \sum_{i=1}^{n_S} (\boldsymbol{\beta}^{\top} \boldsymbol{x}_i - y_i)^2 + \frac{\lambda}{2} \|\boldsymbol{\beta}\|^2 \tag{1}$$

- \Leftarrow This is the optimal linear estimator
 - assuming $y \sim \mathcal{N}(\boldsymbol{x}^{\top}\boldsymbol{\beta}^*, \sigma^2)$,
 - measured on target distribution $x \sim p_T$,
 - with Gaussian prior $\beta^* \sim \mathcal{N}(0, r^2 I)$.

Interestingly, this does not give us different estimator.

Ridge Regression as MAP Inference

$$\hat{\boldsymbol{\beta}}_{\mathsf{RR}} \leftarrow \operatorname*{arg\,min}_{\boldsymbol{\beta}} \frac{1}{n_S} \sum_{i=1}^{n_S} (\boldsymbol{\beta}^{\top} \boldsymbol{x}_i - y_i)^2 + \frac{\lambda}{2} \|\boldsymbol{\beta}\|^2 \tag{1}$$

← This is the optimal linear estimator

- assuming $y \sim \mathcal{N}(\boldsymbol{x}^{\top}\boldsymbol{\beta}^*, \sigma^2)$,
- measured on target distribution $x \sim p_T$,
- with Gaussian prior $\beta^* \sim \mathcal{N}(0, r^2 I)$.

Ridge Regression as MAP Inference

$$\hat{\boldsymbol{\beta}}_{\mathsf{RR}} \leftarrow \operatorname*{arg\,min}_{\boldsymbol{\beta}} \frac{1}{n_S} \sum_{i=1}^{n_S} (\boldsymbol{\beta}^{\top} \boldsymbol{x}_i - y_i)^2 + \frac{\lambda}{2} \|\boldsymbol{\beta}\|^2 \tag{1}$$

← This is the optimal linear estimator

- assuming $y \sim \mathcal{N}(\boldsymbol{x}^{\top}\boldsymbol{\beta}^*, \sigma^2)$,
- measured on target distribution $x \sim p_T$,
- for the worse-case β^* , $\|\beta^*\| \le r$.

This gives the "minimax" linear estimator. We developed a meta algorithm for this mechanism.

A Meta Algorithm

- Step 1: Find a sufficient statistic \hat{eta}_{SS} for the optimal linear estimator given the obervations
- Step 2: Solve the best estimator that is linear in $\hat{\beta}_{SS}$ in the worse-case setting:

$$\hat{\boldsymbol{\beta}}_{\mathsf{MM}} \leftarrow \mathop{\arg\min}_{\boldsymbol{\beta} \text{ linear in } \hat{\boldsymbol{\beta}}_{\mathsf{SS}}} \max_{\|\boldsymbol{\beta}^*\| \leq r} \mathbb{E}_{\mathsf{noise}, \boldsymbol{x} \sim p_T} (\boldsymbol{x}^\top (\boldsymbol{\beta} - \boldsymbol{\beta}^*))^2.$$

A Meta Algorithm

- Step 1: Find a sufficient statistic \hat{eta}_{SS} for the optimal linear estimator given the obervations
- Step 2: Solve the best estimator that is linear in $\hat{\beta}_{SS}$ in the worse-case setting:

$$\hat{\boldsymbol{\beta}}_{\mathsf{MM}} \leftarrow \mathop{\arg\min}_{\boldsymbol{\beta} \text{ linear in } \hat{\boldsymbol{\beta}}_{\mathsf{SS}}} \max_{\|\boldsymbol{\beta}^*\| \leq r} \mathbb{E}_{\mathsf{noise}, \boldsymbol{x} \sim p_T} (\boldsymbol{x}^\top (\boldsymbol{\beta} - \boldsymbol{\beta}^*))^2.$$

- Covariate shift under Gaussian sequence model
 - developed algorithms with only unlabeled target data and/or
 - with few labeled target data,
 - show that our algorithm is optimal among all linear estimators, and
 - is within constant of the best nonlinear estimators under some conditions,
 - prove a separation result between ours and ridge regression
- Covariate shift with approximation error (nonlinear model)
 - developed algorithm that is
 - asymptotically optimal among all linear estimators,
 - provide a practical way to estimate the selection bias on source distribution.
 - tested on real dataset
- Small model shift under Gaussian sequence model
 - developed algorithms that balance model shift and variance,
 - prove optimality among all linear estimators, and
 - is within constant of the best nonlinear estimators under some conditions

- Covariate shift under Gaussian sequence model
 - developed algorithms with only unlabeled target data and/or
 - with few labeled target data
 - show that our algorithm is optimal among all linear estimators, and
 - is within constant of the best nonlinear estimators under some conditions,
 - oprove a separation result between ours and ridge regression
- Covariate shift with approximation error (nonlinear model)
 - developed algorithm that is
 - asymptotically optimal among all linear estimators,
 - provide a practical way to estimate the selection bias on source distribution,
 - tested on real dataset
- Small model shift under Gaussian sequence model
 - developed algorithms that balance model shift and variance,
 - prove optimality among all linear estimators, and
 - is within constant of the best nonlinear estimators under some conditions

Covariate shift under Gaussian sequence model

- developed algorithms with only unlabeled target data and/or
- with few labeled target data,
- show that our algorithm is optimal among all linear estimators, and
- is within constant of the best nonlinear estimators under some conditions,
- prove a separation result between ours and ridge regression
- Covariate shift with approximation error (nonlinear model)
 - developed algorithm that is
 - asymptotically optimal among all linear estimators,
 - provide a practical way to estimate the selection bias on source distribution,
 - tested on real dataset
- Small model shift under Gaussian sequence model
 - developed algorithms that balance model shift and variance,
 - prove optimality among all linear estimators, and
 - is within constant of the best nonlinear estimators under some conditions

Covariate shift under Gaussian sequence model

- developed algorithms with only unlabeled target data and/or
- with few labeled target data,
- show that our algorithm is optimal among all linear estimators, and
- is within constant of the best nonlinear estimators under some conditions,
- prove a separation result between ours and ridge regression
- Covariate shift with approximation error (nonlinear model)
 - developed algorithm that is
 - asymptotically optimal among all linear estimators,
 - g provide a practical way to estimate the selection bias on source distribution,
 - 4 tested on real dataset
- Small model shift under Gaussian sequence model
 - developed algorithms that balance model shift and variance,
 - prove optimality among all linear estimators, and
 - is within constant of the best nonlinear estimators under some conditions

Covariate shift under Gaussian sequence model

- developed algorithms with only unlabeled target data and/or
- with few labeled target data,
- show that our algorithm is optimal among all linear estimators, and
- is within constant of the best nonlinear estimators under some conditions,
- prove a separation result between ours and ridge regression

Covariate shift with approximation error (nonlinear model)

- developed algorithm that is
- asymptotically optimal among all linear estimators,
- oprovide a practical way to estimate the selection bias on source distribution,
- 4 tested on real dataset

Small model shift under Gaussian sequence model

- developed algorithms that balance model shift and variance,
- prove optimality among all linear estimators, and
- is within constant of the best nonlinear estimators under some conditions

Covariate shift under Gaussian sequence model

- developed algorithms with only unlabeled target data and/or
- with few labeled target data,
- show that our algorithm is optimal among all linear estimators, and
- is within constant of the best nonlinear estimators under some conditions,
- prove a separation result between ours and ridge regression

Covariate shift with approximation error (nonlinear model)

- developed algorithm that is
- asymptotically optimal among all linear estimators,
- provide a practical way to estimate the selection bias on source distribution,
- tested on real dataset

• Small model shift under Gaussian sequence model

- developed algorithms that balance model shift and variance,
- prove optimality among all linear estimators, and
- is within constant of the best nonlinear estimators under some conditions

Covariate shift under Gaussian sequence model

- developed algorithms with only unlabeled target data and/or
- with few labeled target data,
- show that our algorithm is optimal among all linear estimators, and
- is within constant of the best nonlinear estimators under some conditions,
- prove a separation result between ours and ridge regression

Covariate shift with approximation error (nonlinear model)

- developed algorithm that is
- asymptotically optimal among all linear estimators,
- g provide a practical way to estimate the selection bias on source distribution,
- 4 tested on real dataset

Small model shift under Gaussian sequence model

- developed algorithms that balance model shift and variance,
- 2 prove optimality among all linear estimators, and
- is within constant of the best nonlinear estimators under some conditions

Covariate shift under Gaussian sequence model

- developed algorithms with only unlabeled target data and/or
- with few labeled target data;
- show that our algorithm is optimal among all linear estimators, and
- is within constant of the best nonlinear estimators under some conditions,
- prove a separation result between ours and ridge regression

Covariate shift with approximation error (nonlinear model)

- developed algorithm that is
- asymptotically optimal among all linear estimators,
- provide a practical way to estimate the selection bias on source distribution,
- tested on real dataset

Small model shift under Gaussian sequence model

- developed algorithms that balance model shift and variance,
- prove optimality among all linear estimators, and
- is within constant of the best nonlinear estimators under some conditions

Thank you!