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On the Problem of Distributions shift

@ Observations: y; = fs(x;) + noise, @; ~ ps,i = 1,2,---ng

o Estimate a linear model B((acz-,yi)?jl)
o Tested on: Egp, ||| fr(x) — BT x|?]
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On the Problem of Distributions shift

Observations: y; = fs(x;) + noise, x; ~ pg,i =1,2,---ng
Estimate a linear model B((z;, 1:)"S,)
Tested on: Egp, (|| fr(z) — B x|?]

Model shift: fg # fr linear, ps # pr
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Revisit Ridge Regression

Ridge Regression as MAP Inference
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< This is the optimal linear estimator
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Revisit Ridge Regression

Ridge Regression as MAP Inference
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< This is the optimal linear estimator
e assuming y ~ N (x ' B*,0?),

@ measured on source distribution  ~ pg,
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Revisit Ridge Regression
Ridge Regression as MAP Inference

ng
Brr — argmin — > (87w —p)? + 2812 ()
B NS 2
< This is the optimal linear estimator
e assuming y ~ N (x ' B*,0?),
@ measured on source distribution  ~ pg,
e with Gaussian prior 3* ~ N(0,7%I). @

?See e.g. Murphy, K. P. (2012). Machine learning: a probabilistic
perspective

How to adapt to the target domain?
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Revisit Ridge Regression

Ridge Regression as MAP Inference
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< This is the optimal linear estimator
e assuming y ~ N (x ' B*,0?),
@ measured on source distribution & ~ pg,
o with Gaussian prior 3* ~ N(0,721).
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Revisit Ridge Regression

Ridge Regression as MAP Inference
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< This is the optimal linear estimator
e assuming y ~ N (x ' B*,0?),
@ measured on target distribution @ ~ pp,
e with Gaussian prior 3* ~ N(0,r%I).

Interestingly, this does not give us different estimator.
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Revisit Ridge Regression

Ridge Regression as MAP Inference

ns

2 1 T 9 | A 2
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< This is the optimal linear estimator
e assuming y ~ N (z'3*,0?),
@ measured on target distribution & ~ pr,

@ for the worse-case 3*,||8%|| < r.

This gives the "minimax” linear estimator. We developed a meta
algorithm for this mechanism.
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A Meta Algorithm

Step 1: Find a sufficient statistic BSS for the optimal linear estimator
given the obervations
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A Meta Algorithm

Step 1: Find a sufficient statistic BSS for the optimal linear estimator
given the obervations

Step 2: Solve the best estimator that is linear in ,@55 in the worse-case
setting:

Bmm <  argmin max Enoise,z~pr (wT(B - /6*))2
B linear in ﬁss 8=l <r
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Results on Different Settings

@ Covariate shift under Gaussian sequence model
@ developed algorithms with only unlabeled target data and/or
@ with few labeled target data,
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Results on Different Settings

@ Covariate shift under Gaussian sequence model

© show that our algorithm is optimal among all linear estimators,
and

@ is within constant of the best nonlinear estimators under some
conditions,
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Results on Different Settings

@ Covariate shift under Gaussian sequence model

@ prove a separation result between ours and ridge regression
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Results on Different Settings

@ Covariate shift under Gaussian sequence model

e Covariate shift with approximation error (nonlinear model)
@ developed algorithm that is
@ asymptotically optimal among all linear estimators,
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Results on Different Settings

@ Covariate shift under Gaussian sequence model

e Covariate shift with approximation error (nonlinear model)

© provide a practical way to estimate the selection bias on source
distribution,
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Results on Different Settings

@ Covariate shift under Gaussian sequence model

e Covariate shift with approximation error (nonlinear model)

@ tested on real dataset
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Results on Different Settings

@ Covariate shift under Gaussian sequence model

e Covariate shift with approximation error (nonlinear model)

@ Small model shift under Gaussian sequence model
@ developed algorithms that balance model shift and variance,
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Results on Different Settings

@ Covariate shift under Gaussian sequence model

e Covariate shift with approximation error (nonlinear model)

@ Small model shift under Gaussian sequence model

@ prove optimality among all linear estimators, and
© is within constant of the best nonlinear estimators under some
conditions
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Thank you!
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