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Problem setting

e Kernel ridge regression estimate with A > 0
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* High dimensional regime where d,n — oo, d < nf with 8 >0

Question: VWhat can we consistently learn in this setting with rotational invariant kernels?

Uniform distributions on spheres
* Ground truth is low degree polynomial

Analysis heavily relies on distribution

R

General distributions
* Ground truth has bounded Hilbert norm as d — oo

Unclear for which ground truth this holds




Main results

Theorem (informal) — polynomial approximation barrier
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«  general input data distribution Px with covariance matrix ; deg = tr(X) xnf (for ¥ = I;, d =< n?)
*  broad range of commonly used rot. inv. kernels of different eigenvalue decays

e including fully connected NTK of any depth, Laplacian, Gaussian, inner product

 different scalings beyond the classical choice 7 = deg 3



llustration of the polynomial approximation barrier
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As dimension grows, the estimator degenerates to a low degree polynomial




Thank you for listening to this talk

We are looking forward to seeing you during
the poster session




