Mind the box: *I*₁-APGD for sparse adversarial attacks on image classifiers

Francesco Croce Matthias Hein

University of Tübingen

International Conference on Machine Learning, 2021

Projected gradient descent (PGD) is commonly used for I_p -bounded adversarial attacks on image classifiers. It maximizes a loss L with the iterative scheme

$$u^{(i+1)} = x^{(i)} + \eta^{(i)} \cdot s(\nabla L(x^{(i)}))$$
(1)

$$x^{(i+1)} = P_{\mathcal{S}}(u^{(i+1)}), \tag{2}$$

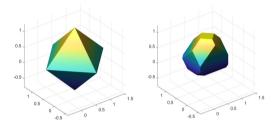
on the feasible set S, with P_S the projection onto S.

Note: unlike for the l_{∞} - and l_2 -threat models, for PGD wrt l_1 there is **no** standard version, and the existing ones are less effective than other attacks.

For l_1 we need to explicitly consider the role of the image domain $[0,1]^d$!

Then, we introduce an **adaptive** version of PGD, I_1 -APGD, specific for the effective threat model I_1 -ball $\cap [0, 1]^d$, which achieves SOTA performance.

Projection step: existing versions of PGD for l_1 project first onto the l_1 -ball $B_1(x, \epsilon)$, then clip to $[0, 1]^d$ (approximated projection).



Proposition 1

The projection problem onto $S = B_1(x, \epsilon) \cap [0, 1]^d$ can be solved in $O(d \log d)$.

Using the **exact projection** allows to better explore the feasible set compared to the approximated one, improving the performance of the attacks.

Update step: in PGD-based attacks the update step is usually done in the **steepest descent direction**. For the l_1 -ball $\cap [0, 1]^d$ -threat model, we get

Proposition 2

Let $z_i = \max\{(1 - x_i) \operatorname{sign}(w_i), -x_i \operatorname{sign}(w_i)\}, \pi$ the ordering such that $|w_{\pi_i}| \ge |w_{\pi_j}|$ for i > j and k the smallest integer for which $\sum_{i=1}^k z_{\pi_i} \ge \epsilon$. The steepest descent direction in $B_1(x, \epsilon) \cap H$ is given elementwise by

$$\delta_{\pi_i}^* = \begin{cases} z_{\pi_i} \cdot \operatorname{sign}(w_{\pi_i}) & \text{for } i < k, \\ (\epsilon - \sum_{i=1}^{k-1} z_{\pi_i}) \cdot \operatorname{sign}(w_{\pi_k}) & \text{for } i = k, . \\ 0 & \text{for } i > k \end{cases}$$
(3)

The sparsity of the steepest descent direction depends on the current point. Then, l_1 -APGD uses updates with **adaptive sparsity**, unlike existing methods.

We also adapt the **black-box** Square Attack (Andriushchenko et al., 2020) to l_1 .

Table 1. Low Budget ($\epsilon = 12$): Robust accuracy achieved by the SOTA l_1 -adversarial attacks on various models for CIFAR-10 in the l_1 -threat model with radius $\epsilon = 12$ of the l_1 -ball. The statistics are computed on 1000 points of the test set. PA and Square are black-box attacks. The budget is 100 iterations for white-box attacks (×9 for EAD and +10 for B&B) and 5000 queries for our l_1 -Square-Attack.

model	clean	EAD	ALMA	SLIDE	B&B	$\mathbf{F}\mathbf{A}\mathbf{B}^{\mathrm{T}}$	APGD _{CE}	PA	Square
APGD-AT (ours)	87.1	64.6	65.0	66.6	62.4	67.5	61.3	79.7	71.8
(Madaan et al., 2021)	82.0	55.3	58.1	56.1	55.2	56.8	54.7	73.1	62.8
(Maini et al., 2020) - AVG	84.6	51.8	54.2	53.8	52.1	61.8	50.4	77.4	68.4
(Maini et al., 2020) - MSD	82.1	51.6	55.4	53.2	50.7	54.6	49.7	72.7	63.5
(Augustin et al., 2020)	91.1	48.9	50.7	48.8	42.1	50.4	37.1	73.2	56.8
(Engstrom et al., 2019) - l_2	91.5	40.3	46.4	35.1	36.8	39.9	30.2	71.7	52.7
(Rice et al., 2020)	89.1	37.7	45.2	32.3	35.2	37.0	27.1	70.5	50.3
(Xiao et al., 2020)	79.4	44.9	74.5	33.3	72.6	78.9	41.4	36.2	20.2
(Kim et al., 2020)*	81.9	26.7	31.8	25.1	23.8	32.4	18.9	54.9	36.0
(Carmon et al., 2019)	90.3	25.1	18.4	19.7	18.7	31.1	13.1	60.8	34.5
(Xu & Yang, 2020)	83.8	20.1	24.0	18.2	14.7	27.8	10.9	57.0	32.0
(Engstrom et al., 2019) - l_{∞}	88.7	14.5	19.4	14.2	12.2	20.9	8.0	57.6	28.0

 l_1 -APGD outperforms the competitors, especially with low computational budget, and l_1 -Square Attack gets better results than the existing black-box methods!

Thanks to l_1 -APGD and l_1 -Square Attack we can extend AutoAttack (Croce & Hein, 2020) to the l_1 -threat model, to test robustness with no parameter tuning!

model	clean	EAD	ALMA	SLIDE	B&B	APGD _{CE+T}	WC	AA	rep.
APGD-AT (ours)	87.1	63.3	61.4	65.9	59.9	60.3	59.7	60.3	-
(Madaan et al., 2021)	82.0	54.5	54.3	55.1	51.9	51.9	51.8	51.9	55.0**
(Maini et al., 2020) - AVG	84.6	50.0	49.7	52.3	49.0	46.8	47.3	46.8	54.0
(Maini et al., 2020) - MSD	82.1	50.1	49.8	51.7	47.7	46.5	46.8	46.5	53.0
(Augustin et al., 2020)	91.1	46.0	42.9	41.5	32.9	31.1	31.9	31.0	-
(Engstrom et al., 2019) - l_2	91.5	36.4	34.7	30.6	27.5	27.0	27.1	26.9	-
(Rice et al., 2020)	89.1	33.9	32.4	28.1	24.2	24.2	23.7	24.0	-
(Xiao et al., 2020)	79.4	34.4	75.0	22.5	59.3	27.2	20.2	16.9	-
(Kim et al., 2020) [*]	81.9	24.4	22.9	19.9	15.7	15.4	15.1	15.1	81.18
(Carmon et al., 2019)	90.3	26.2	13.6	13.6	10.4	8.3	8.5	8.3	-
(Xu & Yang, 2020)	83.8	18.1	14.5	13.9	7.8	7.7	6.9	7.6	59.63
(Engstrom et al., 2019) - l_{∞}	88.7	12.5	10.0	8.7	5.9	4.9	5.1	4.9	-

l_1 -AutoAttack improves the evaluation of robustness wrt l_1 on many classifiers!

Code available at https://github.com/fra31/auto-attack.

Francesco Croce, Matthias Hein Mind the box: I_1 -APGD for sparse adversarial attacks on image classifiers 6/6