Implicit Regularization in Tensor Factorization

Noam Razin* Asaf Maman* Naday Cohen

*Equal contribution

Tel Aviv University

International Conference on Machine Learning (ICML) 2021

Neural networks generalize with no explicit regularization even when:

of learned weights

Neural networks generalize with no explicit regularization even when:

Conventional Wisdom

GD induces implicit regularization towards low "complexity" predictors

Neural networks generalize with no explicit regularization even when:

Conventional Wisdom

GD induces implicit regularization towards low "complexity" predictors

Goal

Mathematically understand this implicit regularization

Neural networks generalize with no explicit regularization even when:

Conventional Wisdom

GD induces implicit regularization towards low "complexity" predictors

<u>Goal</u>

Mathematically understand this implicit regularization

Challenge

Lack complexity measures that capture essence of natural data

Matrix completion: recover unknown matrix given subset of entries

Matrix completion: recover unknown matrix given subset of entries

prediction task over 2 input variables

Matrix completion: recover unknown matrix given subset of entries

prediction task over 2 input variables

Natural complexity measure: matrix rank

Matrix completion: recover unknown matrix given subset of entries

prediction task over 2 input variables

Natural complexity measure: matrix rank

Matrix Factorization

Parameterize solution as product of matrices and fit observations with GD

Matrix completion: recover unknown matrix given subset of entries

prediction task over 2 input variables

Natural complexity measure: matrix rank

Matrix Factorization

Parameterize solution as product of matrices and fit observations with GD

 $MF \leftrightarrow matrix$ completion via linear NN

Matrix completion: recover unknown matrix given subset of entries

Natural complexity measure: matrix rank

Matrix Factorization

Parameterize solution as product of matrices and fit observations with GD

 $MF \leftrightarrow matrix$ completion via linear NN

Past Work (e.g. Arora et al. 2019, Razin & Cohen 2020, Li et al. 2021) In MF (with small init and step size) implicit regularization minimizes rank

Tensor completion: recover unknown tensor given subset of entries

Tensor completion: recover unknown tensor given subset of entries

multi-variable prediction task

Tensor completion: recover unknown tensor given subset of entries

multi-variable prediction task

Tensor Factorization

Parameterize solution as sum of outer products and fit observations via GD

 $\sum_{r=1}^{R} \mathbf{w}_{r}^{1} \otimes \cdots \otimes \mathbf{w}_{r}^{N}$

Tensor completion: recover unknown tensor given subset of entries

Tensor Factorization

Parameterize solution as sum of outer products and fit observations via GD

$$\sum_{r=1}^{R} \mathbf{w}_{r}^{1} \otimes \cdots \otimes \mathbf{w}_{r}^{N}$$

Tensor completion: recover unknown tensor given subset of entries

Tensor Factorization

Parameterize solution as sum of outer products and fit observations via GD

$$\sum_{r=1}^{R} \mathbf{w}_{r}^{1} \otimes \cdots \otimes \mathbf{w}_{r}^{N}$$

Tensor rank: min # of components (R) required to express a tensor

Theorem

In training TF (with small init and step size): $\frac{d}{dt} \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\| \propto \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\|^{2-\frac{2}{N}}$

Theorem

In training TF (with small init and step size): $\frac{d}{dt} \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\| \propto \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\|^{2-\frac{2}{N}}$

Components move slower when small and faster when large!

Theorem

In training TF (with small init and step size): $\frac{d}{dt} \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\| \propto \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\|^{2-\frac{2}{N}}$

Components move slower when small and faster when large! Small init

Theorem

In training TF (with small init and step size): $\frac{d}{dt} \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\| \propto \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\|^{2-\frac{2}{N}}$

Components move slower when small and faster when large!

Small init \implies Incremental growth of components

Theorem

In training TF (with small init and step size): $\frac{d}{dt} \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\| \propto \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\|^{2-\frac{2}{N}}$

Components move slower when small and faster when large!

Small init \implies Incremental growth of components \implies low tensor rank

Theorem

In training TF (with small init and step size): $\frac{d}{dt} \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\| \propto \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\|^{2-\frac{2}{N}}$

Components move slower when small and faster when large!

Small init \implies Incremental growth of components \implies low tensor rank

Experiment

Completion of low rank tensor via TF

Theorem

In training TF (with small init and step size): $\frac{d}{dt} \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\| \propto \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\|^{2-\frac{2}{N}}$

Components move slower when small and faster when large!

Small init \implies Incremental growth of components \implies low tensor rank

Experiment

Completion of low rank tensor via TF

GD over TF leads to low tensor rank!

Theorem

In training TF (with small init and step size): $\frac{d}{dt} \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\| \propto \|\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}\|^{2-\frac{2}{N}}$

Components move slower when small and faster when large!

Small init \implies Incremental growth of components \implies low tensor rank

Experiment

Completion of low rank tensor via TF

GD over TF leads to low tensor rank!

Proposition (under technical conditions)

If tensor completion has rank 1 solution, then TF will reach it

Asaf Maman (TAU)

Implicit Regularization in TF

Recall

Goal: understanding implicit regularization in DL

Recall

Goal: understanding implicit regularization in DL

Challenge: lack measures of complexity that capture natural data

Recall

Goal: understanding implicit regularization in DL

Challenge: lack measures of complexity that capture natural data

Our Analysis

Tensor rank captures the implicit regularization of a non-linear NN

Recall

Goal: understanding implicit regularization in DL

Challenge: lack measures of complexity that capture natural data

Our Analysis

Tensor rank captures the implicit regularization of a non-linear NN

Can tensor rank serve as a measure of complexity?

Recall

Goal: understanding implicit regularization in DL

Challenge: lack measures of complexity that capture natural data

Our Analysis

Tensor rank captures the implicit regularization of a non-linear NN

Can tensor rank serve as a measure of complexity?

Experiments

Standard datasets can be fit with predictors of low tensor rank

Recall

Goal: understanding implicit regularization in DL

Challenge: lack measures of complexity that capture natural data

Our Analysis

Tensor rank captures the implicit regularization of a non-linear NN

Can tensor rank serve as a measure of complexity?

Experiments

Standard datasets can be fit with predictors of low tensor rank

Tensor rank may shed light on both implicit regularization of NNs and properties of real-world data translating it to generalization