6/20/21

Qualcomm AI Research

ICML '21

Qualcom

Federated Learning of User verification Models Without Sharing Embeddings

Hossein Hosseini

Hyunsin Park, Sungrack Yun, Christos Louizos, Joseph Soriaga, Max Welling

Federated Learning (FL)

User Verification (UV)

- User verification is the task of accepting/rejecting users based on their input data.
 - Usually done using some biometric data such as face, voice, fingerprint, etc.
 - Deployed on edge devices for unlocking the device or providing specific services.

User Verification Models- Training and Inference

- UV with machine learning:
 - Cluster users' data in embedding space, s.t. embedding of data of each user is:
 - Close to the embedding vector of that user,
 - Far away from embedding vectors of other users.

• Training loss function: $\ell = l_{pos} + \lambda l_{neg}$

• $l_{\text{pos}} = d(g(x), w_y)$ \rightarrow minimizes distance of g(x) to embedding vector of corresponding user.

• $l_{\text{neg}} = -\min_{u \neq y} d(g(x), w_u) \rightarrow \text{maximizes distance to embedding vectors of other users.}$

Challenges of Training UV Models

- Data collection:
 - UV models need to be trained with large and diverse data for best performance.
 - Collecting data centrally not feasible due to privacy constraints of raw biometric inputs.
 - Use federated learning: FL enables training without having direct access to data.
- How about embeddings?
 - Embeddings are used for verifying users, hence are security-sensitive info and cannot be shared with server or other users
 - \Rightarrow users cannot compute $l_{\text{neg}} = -\min_{u \neq y} d(g(x), w_u)$
 - Training with only $l_{\text{pos}} = d(g(x), w_y)$ causes all embeddings to collapse into same vector (loss will be 0).

Related Work: Federated Averaging with Spreadout (FedAwS), [ICML '20]

- Theorem: higher min distance between embeddings → higher classification accuracy.
 What we want: train with l_{pos} and ensure w_i's are highly separable.
- Original loss function: $\ell(x, y; g, w) = d(g(x), w_y) \lambda \sum_{u \neq y} d(g(x), w_u)$ • FedAwS loss function: $\ell(x, y; g, w) = d(g(x), w_y) - \lambda \sum_{u \neq y} d(w_y, w_u)$

done by users done by server

- \circ **Theorem:** positive loss + spreadout loss ~ original loss.
- Problem: embedding of each user is kept private from other users but not from server.

Proposed Method: Federated User Verification (FedUV)

- Users jointly learn a set of vectors (W), but each user minimizes distance of g(x) to a secret linear combination (v) of those vectors.
- Original loss function: $\ell(x, y; g, w) = d(g(x), w_y) \lambda \min_{u \neq y} d(g(x), w_u)$ • **FedUV** loss function: $\ell(x, y; g, w) = d(g(x), W^T v_y) - \lambda \min_{u \neq y} d(g(x), W^T v_u)$

Error-correcting Codes (ECCs) Codewords as Secret Vectors

- Theorem: With v_u 's chosen from ECC codewords, minimizing l_{pos} also minimizes l_{neg} . \circ Hence, negative loss term becomes redundant.
- How to construct secret codewords?

- **Properties:**
 - Vectors are unique because the user ID is unique,
 - Vectors are secret because the random vector is not known to other users or the server,
 - Vectors are guaranteed to be **maximally separated** due to the use of ECC algorithms.

Experimental Results- UV with voice, face and handwriting data

- Settings: 1000 users, BCH code for generating codewords.
- Methods:
 - Baselines: softmax (regular federated learning with one-hot encoding) and FedAWS [Yu et al., ICML '21].
 - **Our method:** FedUV(c) denotes FedUV with code length of *c*.
- FedUV on par with existing approaches, without sharing embeddings with other users or server.

Thank You!

Paper: https://arxiv.org/abs/2104.08776

Hossein Hosseini hhossein@qti.qualcomm.com