Motivation 000 Problem Formulatio

Offline Optimization

Online Learning

xperiments

Summary

References

Multi-layered Network Exploration via Random Walks: From Offline Optimization to Online Learning

Xutong Liu 1 $\,$ Jinhang Zuo 2 $\,$ Xiaowei Chen 3 $\,$ Wei Chen 4 $\,$ John C.S. Lui 1

¹ The Chinese University of Hong Kong

Carnegie Mellon University

²Carnegie Mellon University

Motivation Problem Formulation Offline Optimization Online Learning Experiments Summary 000 00000000 000000000 000 00 00	References
--	------------

Motivation

Problem Formulation

Offline Optimization Equivalent Bipartite Coverage Model Offline Algorithms

Online Learning

Experiments

Summary

Full paper: https://arxiv.org/abs/2106.05065.

Motivation ●00	Problem Formulation	Offline Optimization 00000000 00000000	Online Learning	Experiments 000	Summary 00

Network Exploration via Random Walks

• Network exploration (NE) is a fundamental paradigm of discovering information or resources available at nodes in a network.

on	Problem	Formulation
	000000	000

.00

Offline Optimization

Online Learning

Experiments 000 Summary 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References

Network Exploration via Random Walks

- Network exploration (NE) is a fundamental paradigm of discovering information or resources available at nodes in a network.
- Random walk is often used as an effective tool for NE. [Lv et al. 2002; Gleich 2015; Wilder et al. 2018]
- Representative applications.
 - Resource searching in peer-to-peer (P2P) networks.
 - Web surfing in online social networks (OSNs).
 - Terrain patrolling to protest forests from poachers.
 - Finding missing youth in suburb/rural areas.

Motivation 000

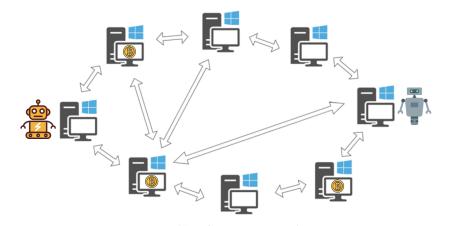
roblem Formulation 00000000 Offline Optimization

Online Learning

Experiments 000 Summary 00 References

Resource Searching in P2P Networks

Question: how to allocate limited budgets to different random walkers, so as to find as many important resources as possible?



Motivatior
000

Problem Formulation

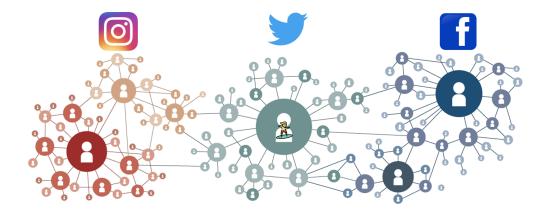
Offline Optimization

Online Learning

Experiments 000 Summary 00 References

Web Surfing in OSNs

Question: how to allocate one's limited time in exploring different OSNs, so as to get the maximum amount of useful information.



Motivation	Problem Formulation	Offline Optimization	Online Learning
000	0000000	0000000	00000000000

Experiments

Summary 00

References

MuLaNE Problem

We abstract the above-mentioned applications as the following Multi-Layered Network Exploration (MuLaNE) problem.

Motivation	Problem Formulation	Offline Optimization	Online Learning	Experiments	Summary
000	●00000000	00000000	0000000000	000	00

MuLaNE Problem

We abstract the above-mentioned applications as the following **Mu**lti-**La**yered **N**etwork **E**xploration (MuLaNE) problem.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◆

- In MuLaNE, there are multiple network layers, where
 - each layer is explored by a random walk and

Motivation	Problem Formulation	Offline Optimization	Online Learning	Experiments	Summary
000	00000000	00000000	0000000000	000	00

MuLaNE Problem

We abstract the above-mentioned applications as the following **Mu**lti-**La**yered **N**etwork **E**xploration (MuLaNE) problem.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- In MuLaNE, there are multiple network layers, where
 - each layer is explored by a random walk and
 - each node has an importance weight.

Motivation	Problem Formulation	Offline Optimization	Onl
000	00000000	0000000	00

Online Learning 00000000000 Experiments 000 Summary 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

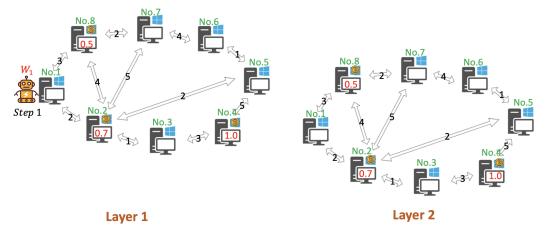
References

MuLaNE Problem

We abstract the above-mentioned applications as the following Multi-Layered Network Exploration (MuLaNE) problem.

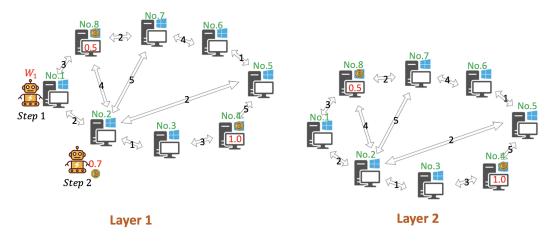
- In MuLaNE, there are multiple network layers, where
 - each layer is explored by a random walk and
 - each node has an importance weight.
- The MuLaNE task is to allocate total random walk budget *B* into different network layers so that the total weights of the unique nodes visited are maximized.

• The random walker W_1 in layer 1, which starts from node 1, is allocated $k_1 = 4$ budgets to walk four steps.



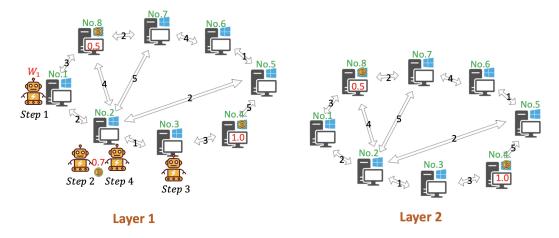
Motivation	Problem Formulation	Offline Optimization	Online Learning	Experiments	Summary	References
000	0000000	0000000	0000000000	000	00	

• For the second step, it goes from node 1 to node 8 with probability 3/5 or goes to node 2 with probability 2/5. After W_1 moves to node 2, it get 0.7 weights.



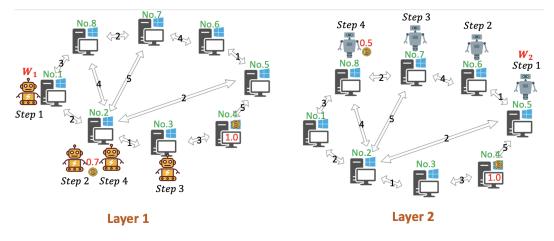
Motivation	Problem Formulation	Offline Optimization	Online Learning	Experiments	Summary	References
000	00000000	00000000	0000000000	000	00	

Suppose the trajectory of W₁ is Φ(1,4) = (1,2,3,2), the total weights of unique nodes visited for layer 1 are 0.7.



Motivation	Problem Formulation	Offline Optimization	Online Learning	Experiments	Summary	References
000	00000000	0000000	00000000000	000	00	

• Similarly, W_2 's trajectory is $\Phi(2,4) = (5,6,7,8)$ when $k_2 = 4$, so the total weights of unique nodes visited for these two random walkers are 0.7 + 0.5 = 1.2.



Offline Optimization
00000000

Online Learning

Experiments 000 Summary 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

References

MuLaNE Settings

Network Structure

• The overall network to be explored (e.g., combining different P2P networks or OSNs) as a multi-layered network G that consists of *m* layers $L_1, ..., L_m$.

MotivationProblem Formulation000000000000000000000000000000000000	Offline Optimization	Online Learning	Experiments 000	Summary 00
---	----------------------	-----------------	--------------------	---------------

Network Structure

- The overall network to be explored (e.g., combining different P2P networks or OSNs) as a multi-layered network G that consists of *m* layers $L_1, ..., L_m$.
- Each layer L_i (e.g., a single OSN) is represented by a weighted directed graph $\mathcal{G}_i(\mathcal{V}_i, \mathcal{E}_i, w_i)$, where

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Motivation Problem Formulation Offline Optimization Online Learning Experiments 000 000000000 000000000 000000000 000	Summary 00
---	---------------

Network Structure

- The overall network to be explored (e.g., combining different P2P networks or OSNs) as a multi-layered network G that consists of *m* layers $L_1, ..., L_m$.
- Each layer L_i (e.g., a single OSN) is represented by a weighted directed graph $\mathcal{G}_i(\mathcal{V}_i, \mathcal{E}_i, w_i)$, where
 - *V_i* is the set of nodes to be explored (e.g., users' home-pages with importance weight *σ_u* for *u* ∈ *V_i*),

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

0000000	Motivation 000	Problem Formulation	Offline Optimization 00000000 00000000	Online Learning	Experiments 000	Sum 00
---------	-------------------	---------------------	--	-----------------	--------------------	-----------

nmarv

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Network Structure

- The overall network to be explored (e.g., combining different P2P networks or OSNs) as a multi-layered network G that consists of m layers L₁,..., L_m.
- Each layer L_i (e.g., a single OSN) is represented by a weighted directed graph $\mathcal{G}_i(\mathcal{V}_i, \mathcal{E}_i, w_i)$, where
 - *V_i* is the set of nodes to be explored (e.g., users' home-pages with importance weight σ_u for u ∈ V_i),
 - $\mathcal{E}_i \subseteq \mathcal{V}_i \times \mathcal{V}_i$ is the set of directed edges (e.g., social links)

MotivationProblem Formulation000000000000000000000000000000000000	Offline Optimization	Online Learning	Experiments 000	
---	----------------------	-----------------	--------------------	--

Summarv

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Network Structure

- The overall network to be explored (e.g., combining different P2P networks or OSNs) as a multi-layered network G that consists of m layers L₁,..., L_m.
- Each layer L_i (e.g., a single OSN) is represented by a weighted directed graph $\mathcal{G}_i(\mathcal{V}_i, \mathcal{E}_i, w_i)$, where
 - *V_i* is the set of nodes to be explored (e.g., users' home-pages with importance weight *σ_u* for *u* ∈ *V_i*),
 - $\mathcal{E}_i \subseteq \mathcal{V}_i \times \mathcal{V}_i$ is the set of directed edges (e.g., social links)
 - w_i is the edge weight function on edges \mathcal{E}_i that navigates the random walk.

Motivation	Problem Formulation	Offline Optimization	Online Learning
000	000000000	0000000	00000000000

Experiments 000 Summary 00

References

MuLaNE Settings

Network Structure

- The overall network to be explored (e.g., combining different P2P networks or OSNs) as a multi-layered network G that consists of *m* layers $L_1, ..., L_m$.
- Each layer L_i (e.g., a single OSN) is represented by a weighted directed graph $\mathcal{G}_i(\mathcal{V}_i, \mathcal{E}_i, w_i)$, where
 - *V_i* is the set of nodes to be explored (e.g., users' home-pages with importance weight *σ_u* for *u* ∈ *V_i*),
 - $\mathcal{E}_i \subseteq \mathcal{V}_i \times \mathcal{V}_i$ is the set of directed edges (e.g., social links)
 - w_i is the edge weight function on edges \mathcal{E}_i that navigates the random walk.
 - Overlapping v.s. Non-overlapping multi-layered networks.

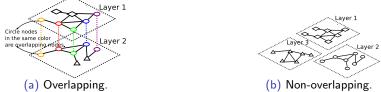


Figure 1: Two types of multi-layered networks.

Motivation	Problem Formulation
000	000000000

Online Learning

Experiments

Summary 00 References

MuLaNE Settings (Cont.)

Random Walk Exploration

• Each layer L_i is associated with an explorer (or random walker) W_i and a fixed starting distribution α_i on nodes \mathcal{V}_i .

¹Our model can be extended to move multiple steps with one unit of budget.

Motivation	Problem Formulation
000	0000000000

Online Learning

Experiments

Summary 00 References

MuLaNE Settings (Cont.)

Random Walk Exploration

- Each layer L_i is associated with an explorer (or random walker) W_i and a fixed starting distribution α_i on nodes \mathcal{V}_i .
 - Explorer W_i starts on a node in \mathcal{G}_i following the distribution α_i ,

¹Our model can be extended to move multiple steps with one unit of budget.

Motivation	Problem Formul
000	0000000000

Online Learning

Experiments

Summary 00 References

MuLaNE Settings (Cont.)

Random Walk Exploration

ation

- Each layer L_i is associated with an explorer (or random walker) W_i and a fixed starting distribution α_i on nodes \mathcal{V}_i .
 - Explorer W_i starts on a node in \mathcal{G}_i following the distribution α_i ,
 - *W_i* walks on network *G_i* following outgoing edges with probability proportional to edge weights.

¹Our model can be extended to move multiple steps with one unit of budget.

Motivation	Problem Formul
000	0000000000

Online Learning

Experiments

Summary 00 References

MuLaNE Settings (Cont.)

Random Walk Exploration

ation

- Each layer L_i is associated with an explorer (or random walker) W_i and a fixed starting distribution α_i on nodes \mathcal{V}_i .
 - Explorer W_i starts on a node in \mathcal{G}_i following the distribution α_i ,
 - *W_i* walks on network *G_i* following outgoing edges with probability proportional to edge weights.
 - Each random walk step will cost one unit of the budget¹.

¹Our model can be extended to move multiple steps with one unit of budget.

Motivation	Problem Formulation
000	000000000

Online Learning

Experiments 000 Summary 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

References

MuLaNE Settings (Cont.)

Rewards

Let Φ(i, k_i):=(X_{i,1}, ..., X_{i,k_i}) be the exploration trajectory for explorer W_i after exploring k_i nodes.

Motivation	Problem Formulation
000	000000000

Online Learning

Experiments 000 Summary 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

References

MuLaNE Settings (Cont.)

Rewards

- Let Φ(i, k_i):=(X_{i,1}, ..., X_{i,k_i}) be the exploration trajectory for explorer W_i after exploring k_i nodes.
- The reward for Φ(i, k_i) is defined as the total weights of *unique* nodes visited by W_i, i.e., Σ<sub>v∈U^{k_i}_{i=1}{X_{i,j}} σ_v.
 </sub>

Motivation	Problem Formulation
000	000000000

Online Learning

Experiments 000 Summary 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References

MuLaNE Settings (Cont.)

Rewards

- Let Φ(i, k_i):=(X_{i,1}, ..., X_{i,k_i}) be the exploration trajectory for explorer W_i after exploring k_i nodes.
- The reward for Φ(i, k_i) is defined as the total weights of *unique* nodes visited by W_i, i.e., Σ<sub>v∈U^{k_i}_{i=1}{X_{i,j}} σ_v.
 </sub>
- Considering trajectories of all W_i's, the total reward is the total weights of unique nodes visited by all random walkers, i.e., Σ_{ν∈U^m_{i=1}} ∪^{k_i}_{j=1}{X_{i,j}} σ_ν.

Motivation	Problem Formulation	
000	000000000	

Online Learning

Experiments 000 Summary 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References

MuLaNE Settings (Cont.)

Rewards

- Let Φ(i, k_i):=(X_{i,1}, ..., X_{i,k_i}) be the exploration trajectory for explorer W_i after exploring k_i nodes.
- The reward for Φ(i, k_i) is defined as the total weights of *unique* nodes visited by W_i, i.e., Σ<sub>v∈U^{k_i}_{i=1}{X_{i,j}} σ_v.
 </sub>
- Considering trajectories of all W_i's, the total reward is the total weights of unique nodes visited by all random walkers, i.e., Σ_{ν∈U^m_{i=1}} ∪^{k_i}_{i=1} {X_{i,j}} σ_ν.

Given network \mathcal{G} , starting distributions α and node weights σ , the expected total reward for budget allocation $\mathbf{k} = (k_1, ..., k_m)$ is

$$r_{\mathcal{G},\boldsymbol{\alpha},\boldsymbol{\sigma}}(\boldsymbol{k}) := \mathbb{E}_{\Phi(1,k_1),\dots,\Phi(m,k_m)} \left[\sum_{\boldsymbol{\nu} \in \bigcup_{i=1}^m \bigcup_{j=1}^{k_i} \{X_{i,j}\}} \sigma_{\boldsymbol{\nu}} \right], \tag{1}$$

Motivation	Problem Formulation
000	00000000

Online Learning

Experiments 000 Summary 00 References

The goal of MuLaNE

We aim to solve the following optimization problem,

$$\text{Maximize } r_{\mathcal{G},\alpha,\sigma}(\boldsymbol{k}) \, s.t. \, \boldsymbol{k} \in \mathbb{Z}_{\geq 0}^{m} \leq \boldsymbol{c}, \, \sum_{i=1}^{m} k_{i} \leq B, \tag{2}$$

In real applications,

- different layers may have overlapping vertices (e.g., home-page of the same user may appear in different OSNs), and α_i's may or may not be stationary distributions;
- The network \mathcal{G} , the node weights σ and the starting distributions α_i 's may not be known in advance.

In this paper, we provide a *systematic* study of all these settings.

Motivation	
000	

roblem Formulation

Offline Optimization • 0000000 Online Learning

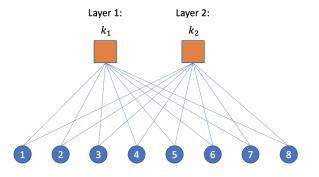
Experiments

Summary 00 References

Equivalent Bipartite Coverage Model

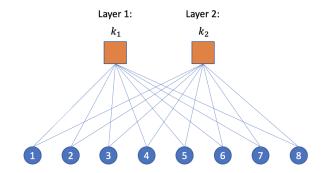
To derive the explicit form of the reward function, we construct a bipartite coverage graph $\mathcal{B}(\mathcal{W}, \mathcal{V}, \mathcal{E}')$, where

- $\mathcal{W} = \{ \mathcal{W}_1, ..., \mathcal{W}_m \}$ are *m* random explorers,
- $\mathcal{V} = \bigcup_{i \in [m]} \mathcal{V}_i$ are all possible distinct nodes to be explored in \mathcal{G} ,
- the edge set \mathcal{E}' indicates whether node *u* could be visited by W_i .



Motivation	Problem Formulation	Offline Optimization	Online Learning	Experiments
000	00000000	0000000	0000000000	000

Equivalent Bipartite Coverage Model (cont.)



Let $P_{i,u}(k_i) = \Pr(u \in \Phi(i, k_i))$ represents the probability that the node u is visited by the random walker W_i given the budget k_i . By summing over all possible nodes, the reward function is

$$r_{\mathcal{G},\alpha,\sigma}(\boldsymbol{k}) = \sum_{u \in \mathcal{V}} \sigma_u \left(1 - \prod_{i \in [m]} \left(1 - P_{i,u}(k_i) \right) \right) \tag{3}$$

Summarv

Online Learning

Experiments 000 Summary 00 References

How to Derive the Explicit Form of $P_{i,u}(k_i)$?

We create absorbing Markov chains $P_i(u) \in \mathbb{R}^{n_i \times n_i}$ by setting the target node u as the absorbing node.

$$P_{i,u}(k_i) = \alpha_i^\top \boldsymbol{P}_i(\boldsymbol{u})^{k_i - 1} \boldsymbol{\chi}_u.$$
(4)

- α_i is the starting distribution of random walker W_i .
- χ_u = (0, ..., 0, 1, 0, ..., 0)[⊤] denotes the one-hot vector with 1 at the *u*-th entry and 0 elsewhere.
- Intuitively, *P_i(u)* corresponds to the transition probability matrix of *G_i* after removing all out-edges of *u* and adding a self loop to itself in the original graph *G_i*.
- *P_i(u)*[v, ·] = χ^T_u if v = u and *P_i(u)*[v, ·] = *P_i[v, ·*] otherwise, where *P_i[v, ·*] denotes the row vector corresponding to the node v of *P_i*.

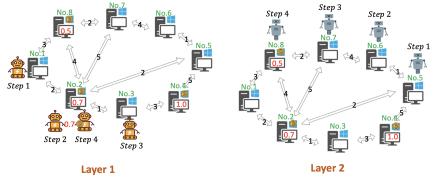
 Motivation
 Problem Formulation
 Offline Optimization
 Online Learning
 Experiments

 000
 00000000
 000000000
 000000000
 000

An Concrete Example

For example, the absorbing transition matrix by setting the node 2 as the target node

for layer 1.
$$\boldsymbol{P}_1(2) = \begin{bmatrix} 0 & 2/5 & 0 & 0 & 0 & 0 & 3/5 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ \vdots & \ddots & & & & \\ 3/9 & 4/9 & 0 & 0 & 0 & 0 & 2/9 & 0 \end{bmatrix}$$



Summary

Motivation	Problem Formulat
000	000000000

Online Learning

Experiments

Summary 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

References

Properties of the Visiting Probability $P_{i,u}(k_i)$

Plugging in Eq. (4), our reward function is

$$r_{\mathcal{G},\boldsymbol{\alpha},\boldsymbol{\sigma}}(\boldsymbol{k}) = \sum_{u\in\mathcal{V}} \sigma_u \left(1 - \prod_{i\in[m]} \left(1 - \alpha_i^\top \boldsymbol{P}_i(\boldsymbol{u})^{k_i-1} \boldsymbol{\chi}_u\right)\right).$$

• Still not easy to solve the problem given its explicit form.

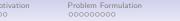
Properties of the Visiting Probability $P_{i,u}(k_i)$

Plugging in Eq. (4), our reward function is

 $r_{\mathcal{G},\boldsymbol{\alpha},\boldsymbol{\sigma}}(\boldsymbol{k}) = \sum_{u\in\mathcal{V}} \sigma_u \left(1 - \prod_{i\in[m]} \left(1 - \alpha_i^\top \boldsymbol{P}_i(\boldsymbol{u})^{k_i-1} \boldsymbol{\chi}_u\right)\right).$

- Still not easy to solve the problem given its explicit form.
- Idea: We can leverage on the submodular maximization technique and greedily solve this problem approximately.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



Online Learning

Experiments 000 Summary 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References

Properties of the Visiting Probability $P_{i,u}(k_i)$

Plugging in Eq. (4), our reward function is

 $r_{\mathcal{G},\boldsymbol{\alpha},\boldsymbol{\sigma}}(\boldsymbol{k}) = \sum_{u\in\mathcal{V}} \sigma_u \left(1 - \prod_{i\in[m]} \left(1 - \alpha_i^\top \boldsymbol{P}_i(\boldsymbol{u})^{k_i-1} \boldsymbol{\chi}_u\right)\right).$

- Still not easy to solve the problem given its explicit form.
- Idea: We can leverage on the submodular maximization technique and greedily solve this problem approximately.

Properties of $P_{i,u}(k_i)$.

- $P_{i,u}(k_i)$ is monotonic increasing. The more budgets, the higher probability that u is visited.
- Define $g_{i,u}(k_i)$ as the marginal gain of $P_{i,u}(k_i)$,

$$g_{i,u}(k_i) = P_{i,u}(k_i) - P_{i,u}(k_i - 1).$$
 (5)

Online Learning

xperiments

Summary

References

Properties of the visiting probability $P_{i,u}(k_i)$ (Cont.)

Properties of $P_{i,u}(k_i)$.

- $g_{i,u}(k_i)$ is not necessarily monotonic decreasing for arbitrary distributions. There may exist one critical step such that this step can increase $P_{i,u}(k_i)$ by a lot.
 - This means that the simple greedy policy may not work.

Figure 2: An example showing $g_{i,u}(k_i)$ and $\sum_u g_{i,u}(k_i)$ is not monotone.

• Stationary distributions are exceptions where we can further prove that the marginal gain $g_{i,u}(k_i)$ is always monotonic decreasing.

References

Submodular and DR-submodular Property

• To solve the MuLaNE problem, we leverage on the submodular and DR-submodular properties of the reward function.

Offline Optimization

00000000

• Function $f : \mathbb{Z}_{\geq 0}^m \to \mathbb{R}$ over the integer lattice $\mathbb{Z}_{\geq 0}^m$ is called a *submodular*² function iff for any $\mathbf{x} \in \mathbb{Z}_{\geq 0}^m$ and $i \neq j$:

$$f(\boldsymbol{x} + \boldsymbol{\chi}_j + \boldsymbol{\chi}_i) - f(\boldsymbol{x} + \boldsymbol{\chi}_j) \leq f(\boldsymbol{x} + \boldsymbol{\chi}_i) - f(\boldsymbol{x}).$$
(6)

• Function $f : \mathbb{Z}_{\geq 0}^m \to \mathbb{R}$ is called a *DR-submodular* (diminishing return submodular) function iff for any $\mathbf{x} \leq \mathbf{y}$ and $i \in [m]$,

$$f(\boldsymbol{y} + \boldsymbol{\chi}_i) - f(\boldsymbol{y}) \leq f(\boldsymbol{x} + \boldsymbol{\chi}_i) - f(\boldsymbol{x}). \tag{7}$$

• Note that submodularity is weaker than DR-submodularity, that is, a DR-submodular function is always a submodular function, but not vice versa.

IotivationProblem Formul00000000000

Experiments 000 Summary 00

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

References

Key Lemma for Arbitrary Distributions

For arbitrary starting distributions, we have the following lemma.

Lemma 1.

For any network \mathcal{G} , distribution α and weights σ , $r_{\mathcal{G},\alpha,\sigma}(\cdot) : \mathbb{Z}^m_{\geq 0} \to \mathbb{R}$ is monotone and submodular.

 The intuition for submodularity: for layer *i*, the marginal gain is decreasing when more budgets are allocated to other layers *j* ∈ [*m*]*i*.

Online Learning

Experiments 000 Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

References

Budget Effective Greedy Algorithm (BEG)

- Leveraging on the monotone submodular property, we design a Budget Effective Greedy algorithm (BEG, Algorithm 1).
- Core: the greedy step and the final for loop.

Algorithm 1 Budget Effective Greedy (BEG) Algorithm
for the Overlapping MuLaNE
Input: Network \mathcal{G} , starting distributions α , node weights
σ , budget B, constraints c.
Output: Budget allocation k.
1: Compute visiting probabilities $(P_{i,u}(b))_{i \in [m], u \in \mathcal{V}, b \in [c_i]}$
according to Eq. (9). Eq. (4) in this slide.
2: $\boldsymbol{k} \leftarrow \text{BEG}((P_{i,u}(b))_{i \in [m], u \in \mathcal{V}, b \in [c_i]}, \boldsymbol{\sigma}, B, \boldsymbol{c}).$
3: Procedure BEG($(P_{i,u}(b))_{i \in [m], u \in \mathcal{V}, b \in [c_i]}, \sigma, B, c)$
4: Let $\mathbf{k} := (k_1, \dots, k_m) \leftarrow 0, K \leftarrow B$.
5: Let $\mathcal{Q} \leftarrow \{(i, b_i) \mid i \in [m], 1 \le b_i \le c_i\}.$
6: while $K > 0$ and $Q \neq \emptyset$ do Eq. (8) in this slide
7: $(i^*, b^*) \leftarrow \arg \max_{(i,b) \in \mathcal{Q}} \delta(i, b, k) / b \triangleright Eq. (11)$
8: $k_{i^*} \leftarrow k_{i^*} + b^*, K \leftarrow K - b^*$. Greedy step.
9: Modify all pairs $(i, b) \in \mathcal{Q}$ to $(i, b - b^*)$.
10: Remove all paris $(i, b) \in \mathcal{Q}$ such that $b \leq 0$.
11: end while
12: for $i \in [m]$ do
13: if $r_{\mathcal{G},\alpha,\sigma}(c_i\boldsymbol{\chi}_i) > r_{\mathcal{G},\alpha,\sigma}(\boldsymbol{k})$, then $\boldsymbol{k} \leftarrow c_i\boldsymbol{\chi}_i$.
14: end for Final for loop.
15: return $k := (k_1,, k_m).$
16: end Procedure

Viotivation	Problem Formulation
000	00000000

Online Learning

Experiments

Summary

References

Budget Effective Greedy Algorithm (BEG) (cont.)

• Let $\delta(i, b, \mathbf{k})$ be the *per-unit marginal gain* $(r_{\mathcal{G},\alpha,\sigma}(\mathbf{k} + b\chi_i) - r_{\mathcal{G},\alpha,\sigma}(\mathbf{k}))/b$ for allocating *b* more budgets to layer *i*, which equals to

$$\sum_{u \in \mathcal{V}} \sigma_u \prod_{j \neq i} (1 - P_{j,u}(k_j)) (P_{i,u}(k_i + b) - P_{i,u}(k_i)) / b.$$
(8)

Notivation	Problem Formulation
000	00000000

Online Learning

Experiments

Summary 00 References

Budget Effective Greedy Algorithm (BEG) (cont.)

• Let $\delta(i, b, \mathbf{k})$ be the *per-unit marginal gain* $(r_{\mathcal{G},\alpha,\sigma}(\mathbf{k} + b\chi_i) - r_{\mathcal{G},\alpha,\sigma}(\mathbf{k}))/b$ for allocating *b* more budgets to layer *i*, which equals to

$$\sum_{u \in \mathcal{V}} \sigma_u \prod_{j \neq i} (1 - P_{j,u}(k_j)) (P_{i,u}(k_i + b) - P_{i,u}(k_i)) / b.$$
(8)

Each iteration greedily selects the (i, b) pair in Q such that the per-unit marginal gain δ(i, b, k) is maximized.

 $^{^{3}}$ This part is crucial to guarantee the solution quality in case that initial steps yield bad solutions. It also improves the time-consuming partial enumeration procedure of the existing algorithm BEGE [Alon, Gamzu, and Tennenholtz 2012].

Experiments

Summary

References

Budget Effective Greedy Algorithm (BEG) (cont.)

• Let $\delta(i, b, \mathbf{k})$ be the *per-unit marginal gain* $(r_{\mathcal{G},\alpha,\sigma}(\mathbf{k} + b\chi_i) - r_{\mathcal{G},\alpha,\sigma}(\mathbf{k}))/b$ for allocating *b* more budgets to layer *i*, which equals to

$$\sum_{u \in \mathcal{V}} \sigma_u \prod_{j \neq i} (1 - P_{j,u}(k_j)) (P_{i,u}(k_i + b) - P_{i,u}(k_i)) / b.$$
(8)

- Each iteration greedily selects the (i, b) pair in Q such that the per-unit marginal gain δ(i, b, k) is maximized.
- In the final for loop, we attempt to allocate all budgets to layer *i* and replace the current best budget allocation if we have a larger reward³.

 $^{^{3}}$ This part is crucial to guarantee the solution quality in case that initial steps yield bad solutions. It also improves the time-consuming partial enumeration procedure of the existing algorithm BEGE [Alon, Gamzu, and Tennenholtz 2012].

Mot	iva	itio	n
000	>		

Problem Formulation

Offline Optimization

Online Learning

Experiments 000 Summary 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

References

Theoretical Guarantee for BEG

Theorem 2.

Algorithm 1 obtains a $(1 - e^{-\eta}) \approx 0.357$ -approximate solution, where η is the solution of equation $e^{\eta} = 2 - \eta$, to the overlapping MuLaNE problem.

Motivation 000 Problem Formulation

Offline Optimization

Online Learning

Experiments 000

Summary 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References

Theoretical Guarantee for BEG

Theorem 2.

Algorithm 1 obtains a $(1 - e^{-\eta}) \approx 0.357$ -approximate solution, where η is the solution of equation $e^{\eta} = 2 - \eta$, to the overlapping MuLaNE problem.

• We provide a novel analysis with 0.357-approximation, which improves the existing works [Khuller, Moss, and Naor 1999; Alon, Gamzu, and Tennenholtz 2012] with only $\frac{1}{2}(1 - e^{-1}) \approx 0.316$ approximate solution.

Motivation 000 Problem Formulation

Offline Optimization

Online Learning

Experiments 000

Summary 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References

Theoretical Guarantee for BEG

Theorem 2.

Algorithm 1 obtains a $(1 - e^{-\eta}) \approx 0.357$ -approximate solution, where η is the solution of equation $e^{\eta} = 2 - \eta$, to the overlapping MuLaNE problem.

- We provide a novel analysis with 0.357-approximation, which improves the existing works [Khuller, Moss, and Naor 1999; Alon, Gamzu, and Tennenholtz 2012] with only $\frac{1}{2}(1 e^{-1}) \approx 0.316$ approximate solution.
- One can use partial enumeration [Alon, Gamzu, and Tennenholtz 2012] to get a better (1 1/e) approximation, but the time complexity is much higher $(B^3m^3$ times higher) than ours.

vivation Problem Formu

Experiments 000 Summary 00 References

Key Lemma for Stationary Distributions

For stationary distributions, we have another lemma.

Lemma 3.

For any network \mathcal{G} , stationary distributions π and node weights σ , function $r_{\mathcal{G},\pi,\sigma,}(\cdot): \mathbb{Z}^m_{\geq 0} \to \mathbb{R}$ is monotone and DR-submodular.

 The intuition for DR-submodularity: the marginal gain is decreasing when more budgets are allocated to any layers j ∈ [m] (including layer i itself). Motivation 000 Problem Formulation

Offline Optimization

Online Learning

Experiments

Summary 00 References

Myopic Greedy Algorithm (MG)

Since the reward function is DR-submodular, the BEG procedure can be replaced by the simple MG procedure in Algorithm 2 with a better approximation ratio and better time complexity.

Algorithm 2 Myopic Greedy (MG) Algorithm for MuLaNE

- 1: Same input, output and line 1-2 as in Alg. 1, except replacing BEG with MG procedure below.
- 2: **Procedure** MG($(P_{i,u}(b))_{i \in [m], u \in \mathcal{V}, b \in [c_i]}, \sigma, B, c$)
- 3: Let $\boldsymbol{k} := (k_1, ..., k_m) \leftarrow \boldsymbol{0}, K \leftarrow B$.
- 4: **while** K > 0 **do**
- 5: $i^* \leftarrow \arg\max_{i \in [m], k_i+1 \leq c_i} \delta(i, 1, \mathbf{k}). \triangleright Eq. (11)$
- 6: $k_{i^*} \leftarrow k_{i^*} + 1, K \leftarrow K 1.$ Greedy with one more
- 7: end while budget to layer i.

8: **return**
$$k = (k_1, ..., k_m).$$

9: end Procedure

Motivation 000	Problem Formulation	Offline Optimization	Online Learning	Experiments 000	Summary 00	Re

Theoretical guarantee for MG

Theorem 4.

Algorithm 2 obtains a (1 - 1/e)-approximate solution to the overlapping MulaNE with the stationary starting distributions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

		0000000	Offline Optimization	Online Learning 00000000000	Experiments 000	Summary 00	Refe
--	--	---------	----------------------	--------------------------------	--------------------	---------------	------

Non-overlapping Multi-layered Networks

For non-overlapping networks, since nodes between different layers do not overlap, we can rewrite the reward function in Eq. (3) by

$$r_{\mathcal{G},\boldsymbol{\alpha},\boldsymbol{\sigma}}(\boldsymbol{k}) = \sum_{i \in [m]} \sum_{u \in \mathcal{V}_i} \sigma_u P_{i,u}(k_i).$$
(9)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We design a dynamic programming algorithm for arbitrary starting distributions and a greedy algorithm for stationary distributions, each of which gives optimal solutions.

Motivation	Problem Formulation
000	000000000

.

Offline Optimization

Online Learning

Experiments 000 Summary 00 References

Summary for Offline Optimization

The summary for offline models and algorithmic results are presented in the following Table for further reference.

$$g_{i,u}(k_i) = P_{i,u}(k_i) - P_{i,u}(k_i - 1).$$
(10)

Overlapping?	Starting distribution	Algorithm	Apprx ratio	Time complexity
✓	Arbitrary	Budget Effective Greedy	$(1-e^{-\eta})^4$	$O(B \ \boldsymbol{c}\ _{\infty} mn_{max} + \ \boldsymbol{c}\ _{\infty} mn_{max}^{3})$
\checkmark	Stationary	Myopic Greedy	(1 - 1/e)	$O(Bmn_{max} + \ \boldsymbol{c}\ _{\infty} mn_{max}^3)$
×	Arbitrary	Dynamic Programming	1	$O(B \ \boldsymbol{c}\ _{\infty} m + \ \boldsymbol{c}\ _{\infty} m n_{max}^3)$
×	Stationary	Myopic Greedy	1	$O(B \log m + \ \boldsymbol{c}\ _{\infty} m n_{max}^3)$
		C . I		1.1

Table 1: Summary of the offline models and algorithms.

・ロト・日本・日本・日本・日本・日本

 $^{^41-}e^{-\,\eta}\,pprox 0.357$, where η is the solution of $e^\eta\,=2\,-\,\eta.$

Mot	iva	tio	n
000)		

Problem Formulation

Offline Optimization

Online Learning •0000000000

Experiments 000 Summary 00 References

Settings for Online Learning

• We consider *T*-round explorations.

⁵More precisely we only need to know the number of independent explorers. If two explorers explore on the same layer, it is equivalent as two layers with identical graph structures.

Motivation	Problem Formulation	Offline Optimization
000	00000000	0000000
		0000000

Online Learning

Experiments 000 Summary 00 References

Settings for Online Learning

- We consider *T*-round explorations.
- Before the exploration, we only know an upper bound of the total number of nodes in ${\cal G}$ and the number of layers $m.^5$

⁵More precisely we only need to know the number of independent explorers. If two explorers explore on the same layer, it is equivalent as two layers with identical graph structures.

ivation	Problem Formulation	0
	00000000	0

Online Learning •0000000000 Experiments 000 Summary 00 References

Settings for Online Learning

- We consider *T*-round explorations.
- Before the exploration, we only know an upper bound of the total number of nodes in G and the number of layers m.⁵
- We do not know about the network structure \mathcal{G} , the starting distributions α or node weights σ .

Motivation 000	Problem Formulation	Offline Optimization 0000000 0000000	Online Learning	Experiments 000	Summary 00	References

 In round t ∈ [T], we choose the budget allocation k_t:=(k_{t,1},..., k_{t,m}) only based on observations from previous rounds.

⁶We further consider random node weights with unknown mean vector σ in this paper.

^{▲□▶ ▲}圖▶ ▲≣▶ ▲≣▶ ■ のへで

Motivation Problem Formulation Offline Optimization 000 00000000 00000000 000000000 00000000 00000000	Online Learning	Experiments 000	Summary 00	References
---	-----------------	--------------------	---------------	------------

 In round t ∈ [T], we choose the budget allocation k_t:=(k_{t,1},..., k_{t,m}) only based on observations from previous rounds.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

After taking the action k_t, the random explorer W_i, which is part of the environment, would explore k_{t,i} steps and generate the exploration trajectory Φ(i, k_{t,i})=(X_{i,1},...,X<sub>i,k_{t,i}).
</sub>

 $^{^{6}}$ We further consider random node weights with unknown mean vector σ in this paper.

	e Learning Experiments Summary References
--	---

- In round t ∈ [T], we choose the budget allocation k_t:=(k_{t,1},..., k_{t,m}) only based on observations from previous rounds.
- After taking the action k_t, the random explorer W_i, which is part of the environment, would explore k_{t,i} steps and generate the exploration trajectory Φ(i, k_{t,i})=(X_{i,1},...,X<sub>i,k_{t,i}).
 </sub>
- Reward: the total weights of unique nodes visited by all random explorers in round *t*.

 $^{^{6}}$ We further consider random node weights with unknown mean vector σ in this paper.

MotivationProblem Formulation000000000000	Offline Optimization 00000000 0000000	Online Learning	Experiments 000	Summary 00	References
---	---	-----------------	--------------------	---------------	------------

- In round t ∈ [T], we choose the budget allocation k_t:=(k_{t,1},..., k_{t,m}) only based on observations from previous rounds.
- After taking the action k_t, the random explorer W_i, which is part of the environment, would explore k_{t,i} steps and generate the exploration trajectory Φ(i, k_{t,i})=(X_{i,1},...,X<sub>i,k_{t,i}).
 </sub>
- Reward: the total weights of unique nodes visited by all random explorers in round *t*.
- Feedbacks:
 - The exploration trajectory $\Phi(i, k_{t,i})$ for each layer L_i .
 - The fixed importance weight σ_u of $u \in \Phi(i, k_{t,i})^6$.

 $^{^{6}}$ We further consider random node weights with unknown mean vector σ in this paper.

tivation	Problem Formulation	Offli
0	00000000	000

Online Learning

Experiments

Summary 00 References

The Goal of Online MuLaNE

- Our goal: design an efficient online learning algorithm A to gain as much cumulative reward as possible in T rounds.
- Exploration-exploitation trade-off.
- The cumulative regret as our evaluation metric.
 Formally, the *T*-round ((ξ, β)-approximation) regret of A is:

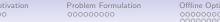
$$\operatorname{Reg}_{\mathcal{G},\alpha,\sigma}(T) = \xi \beta T \cdot r_{\mathcal{G},\alpha,\sigma}(\boldsymbol{k}^*) - \mathbb{E}\left[\sum_{t=1}^T r_{\mathcal{G},\alpha,\sigma}(\boldsymbol{k}^A_t)\right], \quad (11)$$

where \mathbf{k}^* is the optimal budget allocation, \mathbf{k}_t^A is the budget allocation selected by A at t, the expectation is taken over the algorithm and the random trajectories.

Our Idea to Handle the Unknown Networks

• For unknown networks and starting distributions, our idea is to bypass the transition matrices P_i and directly estimate the visiting probabilities $P_{i,u}(b) \in [0, 1]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@



e Optimization

Online Learning

Experiments 000 Summary 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References

Our Idea to Handle the Unknown Networks

- For unknown networks and starting distributions, our idea is to bypass the transition matrices P_i and directly estimate the visiting probabilities $P_{i,u}(b) \in [0, 1]$.
 - Avoids the analysis for how the estimated P_i affects the algorithm's performance, which could be unbounded because of the general graph structure and the reward function that is highly non-linear in P_i .

/lotivation	Problem Formulation
000	00000000

Summary 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References

Our Idea to Handle the Unknown Networks

- For unknown networks and starting distributions, our idea is to bypass the transition matrices P_i and directly estimate the visiting probabilities $P_{i,u}(b) \in [0, 1]$.
 - Avoids the analysis for how the estimated P_i affects the algorithm's performance, which could be unbounded because of the general graph structure and the reward function that is highly non-linear in P_i .
 - Save the matrix calculation by directly using the estimated $P_{i,u}(b)$.

otivation	Problem	Formulatio
00	000000	000

Experiments 000 Summary 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References

Our Idea to Handle the Unknown Networks

- For unknown networks and starting distributions, our idea is to bypass the transition matrices P_i and directly estimate the visiting probabilities $P_{i,u}(b) \in [0,1]$.
 - Avoids the analysis for how the estimated P_i affects the algorithm's performance, which could be unbounded because of the general graph structure and the reward function that is highly non-linear in P_i .
 - Save the matrix calculation by directly using the estimated $P_{i,u}(b)$.
- For the unknown weights, we maintain the optimistic weight $\bar{\sigma}_u = 1$ if $u \in \mathcal{V}$ has not been visited, and replace $\bar{\sigma}_u$ with the revealed σ_u after its first visit.

ivation	Problem Formulation	Offlir
C	00000000	000

Online Learning

Experiments 000 Summary 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

References

CUCB-MAX Algorithm

- An adaptation of the combinatorial upper confidence bound algorithm (CUCB) [Chen et al. 2016] to our setting.
- Base arms A = {(i, u, b) | i ∈ [m], u ∈ V, b ∈ [c_i]}, each of which maintains the visiting probability μ_{i,u,b} = P_{i,u}(b).
- Offline oracle: BEG algorithm.

Motivation 000 Problem Formulation

Offline Optimization

Online Learning

Experiments

Summary 00 References

CUCB-MAX Algorithm (cont.)

Algorithm 3 CUCB-MAX Algorithm for the MuLaNE **Input:** Budget B, number of layers m, number of nodes $|\mathcal{V}|$, constraints c, offline oracle BEG. 1: For each arm $(i, u, b) \in \mathcal{A}$, $T_{i,u,b} \leftarrow 0$, $\hat{\mu}_{i,u,b} \leftarrow 0$. 2: For each node $v \in \mathcal{V}, \bar{\sigma}_v \leftarrow 1$. 3: for t = 1, 2, 3, ..., T do for $(i, u, b) \in \mathcal{A}$ do 4: 5: $\rho_{i,u,b} \leftarrow \sqrt{3 \ln t / (2T_{i,u,b})}$. Calculate UCB. $\tilde{\mu}_{i,u,b} \leftarrow \min\{\hat{\mu}_{i,u,b} + \rho_{i,u,b}, 1\}.$ 6: 7. end for For $(i, u, b) \in \mathcal{A}$, $\bar{\mu}_{i,u,b} \leftarrow \max_{j \in [b]} \tilde{\mu}_{i,u,\dot{h}_{i,k}}$ sure UCB $k \leftarrow \operatorname{BEG}((\bar{\mu}_{i,u,b})_{(i,u,b)\in\mathcal{A}}, (\bar{\sigma}_v)_{v \in V}, B, \mathcal{B}, \mathcal{B})$ is nonotone. Apply budget allocation k, which gives trajectories 8: 9: 10: $\boldsymbol{X} := (X_{i,1}, ..., X_{i,k_i})_{i \in [m]}$ as feedbacks. For any visited node $v \in \bigcup_{i \in [m]} \{X_{i,1}, ..., X_{i,k_i}\},\$ 11: receive its node weight σ_v and set $\overline{\sigma}_v \leftarrow \sigma_u$. For any $(i, u, b) \in \tau := \{(i, u, b) \in \mathcal{A} | b \leq k_i\},\$ 12: $Y_{i,u,b} \leftarrow 1$ if $u \in \{X_{i,1}, \dots, X_{i,b}\}$ and 0 otherwise. For $(i, u, b) \in \tau$, update $T_{i,u,b}$ and $\hat{\mu}_{i,u,b}$: 13: $T_{i,u,b} \leftarrow T_{i,u,b} + 1, \ \hat{\mu}_{i,u,b} \leftarrow \hat{\mu}_{i,u,b} + (Y_{i,u,b} - y_{i,u,b})$ $(\hat{\mu}_{i,u,b})/T_{i,u,b}$. Update base arms. 14: end for

vation	Problem	Form
	000000	000

Online Learning

Experiments

Summary 00 References

Challenges for the Proof of Regrets

Two challenges.

- The BEG oracle only works when the inputs are monotonic increasing w.r.t *b*, but random UCB values may not.
- We need to handle the additional regret caused by the optimistic weights $\bar{\sigma}_u$ for unrevealed node weights, while CUCB only considers regrets caused by the unknown parameters of base arms.

How to Guarantee the UCB Values are Monotonic Increasing?

- Since BEG can only output $(1 e^{-\eta}, 1)$ -approximation with monotone inputs, we take the max in Line 8 (if UCB $\bar{\mu}_{i,u,b} \leq \bar{\mu}_{i,u,b-1}$, then raise $\bar{\mu}_{i,u,b} = \bar{\mu}_{i,u,b-1}$) to guarantee the UCB value is monotonic increasing w.r.t b.
- Combining the fact that the truth value is indeed increasing, we can bound the regret.
- This technique can apply to other bandit algorithms when UCB values need to be increasing.

How to Handle the Over-estimated Node Weights?

We rely on the following property and a key observation.

Property 1.

(1-Norm Bounded Smoothness). The reward function $r_{\mu,\sigma}(\mathbf{k})$ satisfies the 1-norm bounded smoothness condition, i.e., for any budget allocation \mathbf{k} , any two vectors $\boldsymbol{\mu} = (\mu_{i,u,b})_{(i,u,b)\in\mathcal{A}}, \ \boldsymbol{\mu}' = (\mu'_{i,u,b})_{(i,u,b)\in\mathcal{A}}$ and any node weights σ , σ' , we have $|r_{\mu,\sigma}(\mathbf{k}) - r_{\mu',\sigma'}(\mathbf{k})| \leq \sum_{i\in[m],u\in\mathcal{V},b=k_i}(\sigma_u|\mu_{i,u,b} - \mu'_{i,u,b}| + |\sigma_u - \sigma'_u|\mu'_{i,u,b}).$

• We bound $|\sigma_u - \sigma'_u| \mu'_{i,u,b}$ term based on the observation that $\mu'_{i,u,b}$ is small and decreasing quickly $(\mu'_{i,u,b} \sim O(\frac{1}{\sqrt{T_{i,u,b}}}))$ before u is first visited.

Moti	vation
000	

Problem Formulation

Offline Optimization

Online Learning

Experiments 000 Summary 00 References

Regret Guarantee for CUCB-MAX

Theorem 5.

Algorithm 3 has the following distribution-dependent $(1 - e^{-\eta}, 1)$ approximation regret,

$$\operatorname{Reg}_{\mu,\sigma}(T) \leq \sum_{(i,u,b)\in\mathcal{A}} \frac{108m|\mathcal{V}|\ln T}{\Delta_{\min}^{i,u,b}} + 2|\mathcal{A}| + \frac{\pi^2}{3}|\mathcal{A}|\Delta_{\max}.$$
 (12)

- Remark 1: O(log T) regret is asymptotically tight. Coefficient m|V| corresponds to the number of edges in the (unknown) complete bipartite coverage graph.
- Remark 2: The (1 e^{-η}, 1) approximate regret is determined by the offline oracle BEG. This regret can be replaced by (1 - 1/e, 1) regret using BEGE or even the exact regret if the oracle can obtain the optimal budget allocation.

00000000 (ivation	Problem Formulation	С
)	00000000	C

Online Learning

Experiments 000 Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References

Online Learning for Non-overlapping MuLaNE

For the non-overlapping case, we set layer-wise marginal gains as our base arms.

- $\mathcal{A} = \{(i, b) | i \in [m], b \in [c_i]\}.$
- $\mu_{i,b} = \sum_{u \in \mathcal{V}} \sigma_u(P_{i,u}(b) P_{i,u}(b-1))$ is the marginal gain of assigning budget b in layer *i*.
- Apply the standard CUCB algorithm.
- Use MG as our oracle.
- We can achieve the exact regret bound $O(\sum_{(i,b)\in\mathcal{A}} 48B \ln T/\Delta_{\min}^{i,b})$.

Motivation	Problem Formulation	Offline Optimization	Online Learning	Experiments	Summary	References
000	00000000	00000000	0000000000	●00	00	

Dataset and Settings

FF-TW-YT (FriendFeed-Twitter-Youtube) dataset.

- m = 3 social network layers, 6,407 distinct nodes representing users and 74, 836 directed edges representing connections.
- Edge weight is set to be 1 and node weights are set to be σ_u ∈ {0, 0.5, 1} uniformly at random.
- Three random walkers starting from a fixed node in each layer.

Layer	FriendFeed	Twitter	YouTube
# of vertices	5,540	5,702	663
# of edges	31,921	42,327	614

Table 2: Statistics for FF-TW-YT network

Motivation

Problem Formulation

Offline Optimization

Online Learning

Experiments

Summary

References

Experimental Results

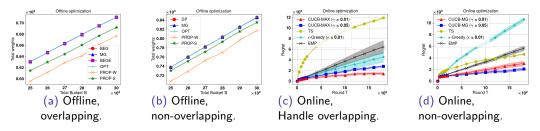


Figure 3: Left: total weights of unique nodes visited for offline algorithms. Right: regret for online algorithms when B = 3000.

For offline settings, BEG is empirically close to the optimal solution. For online settings, CUCB-MAX achieves the smallest regret. Motivation 000 Problem Formulation

Offline Optimization

Online Learning

Experiments

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

References

Experimental Results (Cont.)

Table 3. Running time (seconds) for offline and online algorithms.

								0119	/	
	B=2.6k	B=2.8k	B=3.0k		B=2.6k	B=2.8k	B=3.0k	Overlapping?	√	×
BEG BEGE OPT	0.274 34.37 91.16	0.316 45.51 98.42	0.363 59.20 105.63	DP MG OPT	0.038 0.008 70.10	0.044 0.009 75.78	0.050 0.010 81.11	BEG BEGE DP OPT	1.22 60.03 NA 107.33	NA NA 0.86 82.01
(a) Running time of offline algorithms for the overlapping case with different budgets B.					ning time of -overlapping B.			(c) Per-round runr MAX (or CUCB-M cles when B=3.0k.		for CUCB-

Figure 4: Computational Efficiency

BEG is computational efficient and is at least two orders magnitude faster than $\mathsf{BEGE}/\mathsf{OPT}.$

Motivation 000	Problem Formulation	Offline Optimization 00000000 0000000	Online Learning	Experiments 000	Summary •0	Reference
-------------------	---------------------	---	-----------------	--------------------	---------------	-----------

Conclusions and Future Work

• Formulates the MuLaNE as a budget allocation problem, requiring that the total weights of distinct nodes visited are maximized.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Motivation	Problem Formulation	Offline Optimization	Online Learning	Experiments	Summary	References
000	00000000	00000000	0000000000	000	•o	

Conclusions and Future Work

- Formulates the MuLaNE as a budget allocation problem, requiring that the total weights of distinct nodes visited are maximized.
- Propose algorithms for MuLaNE (offline or online) according to the multi-layered network structure (overlapping or non-overlapping) and starting distributions (arbitrary or stationary), each of which has a provable approximation factors, running time or regret guarantee and are validated by experiments.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Motivation 000	Problem Formulation	Offline Optimization	Online Learning	Experiments 000	Summary ●○	References
		0000000				

Conclusions and Future Work

- Formulates the MuLaNE as a budget allocation problem, requiring that the total weights of distinct nodes visited are maximized.
- Propose algorithms for MuLaNE (offline or online) according to the multi-layered network structure (overlapping or non-overlapping) and starting distributions (arbitrary or stationary), each of which has a provable approximation factors, running time or regret guarantee and are validated by experiments.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

- Future directions:
 - Jointly optimize starting distributions and budget allocation.
 - Adaptive MuLaNE.

Motivation 000	Problem Formulation	Offline Optimization 00000000 00000000	Online Learning	Experiments	Summary O	References	
08.4							

Q&A

Thanks for listening!

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Motivation 000	Problem Formulation	Offline Optimization 00000000 00000000	Online Learning	Experiments 000	Summary 00	References

References I

Lv, Qin et al. (2002). "Search and replication in unstructured peer-to-peer networks".

In: Proceedings of the 16th international conference on Supercomputing, pp. 84–95.

- Gleich, David F (2015). "PageRank beyond the Web". In: SIAM Review 57.3, pp. 321–363.
- Wilder, Bryan et al. (2018). "Maximizing influence in an unknown social network". In: *Thirty-Second AAAI Conference on Artificial Intelligence*.
- Alon, Noga, Iftah Gamzu, and Moshe Tennenholtz (2012). "Optimizing budget allocation among channels and influencers". In: Proceedings of the 21st international conference on World Wide Web. ACM, pp. 381–388.
- Khuller, Samir, Anna Moss, and Joseph Seffi Naor (1999). "The budgeted maximum coverage problem". In: *Information processing letters* 70.1, pp. 39–45.
- Chen, Wei et al. (2016). "Combinatorial multi-armed bandit and its extension to probabilistically triggered arms". In: *The Journal of Machine Learning Research* 17.1, pp. 1746–1778.