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Network Exploration via Random Walks

• Network exploration (NE) is a fundamental paradigm of discovering information or
resources available at nodes in a network.

• Random walk is often used as an effective tool for NE. [Lv et al. 2002; Gleich
2015; Wilder et al. 2018]
• Representative applications.

• Resource searching in peer-to-peer (P2P) networks.
• Web surfing in online social networks (OSNs).
• Terrain patrolling to protest forests from poachers.
• Finding missing youth in suburb/rural areas.
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Resource Searching in P2P Networks

Question: how to allocate limited budgets to different random walkers, so as to find as
many important resources as possible?
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Web Surfing in OSNs

Question: how to allocate one’s limited time in exploring different OSNs, so as to get
the maximum amount of useful information.
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MuLaNE Problem

We abstract the above-mentioned applications as the following Multi-Layered Network
Exploration (MuLaNE) problem.

• In MuLaNE, there are multiple network layers, where
• each layer is explored by a random walk and
• each node has an importance weight.

• The MuLaNE task is to allocate total random walk budget B into different
network layers so that the total weights of the unique nodes visited are maximized.
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A Concrete Example

• The random walker W1 in layer 1, which starts from node 1, is allocated k1 = 4
budgets to walk four steps.
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A Concrete Example

• For the second step, it goes from node 1 to node 8 with probability 3/5 or goes to
node 2 with probability 2/5. After W1 moves to node 2, it get 0.7 weights.
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A Concrete Example

• Suppose the trajectory of W1 is Φ(1, 4) = (1, 2, 3, 2), the total weights of unique
nodes visited for layer 1 are 0.7.
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A Concrete Example

• Similarly, W2’s trajectory is Φ(2, 4) = (5, 6, 7, 8) when k2 = 4, so the total weights
of unique nodes visited for these two random walkers are 0.7 + 0.5 = 1.2.
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MuLaNE Settings

Network Structure
• The overall network to be explored (e.g., combining different P2P networks or

OSNs) as a multi-layered network G that consists of m layers L1, ..., Lm.

• Each layer Li (e.g., a single OSN) is represented by a weighted directed graph
Gi (Vi , Ei ,wi ), where
• Vi is the set of nodes to be explored (e.g., users’ home-pages with importance

weight σu for u ∈ Vi ),
• Ei ⊆ Vi × Vi is the set of directed edges (e.g., social links)
• wi is the edge weight function on edges Ei that navigates the random walk.
• Overlapping v.s. Non-overlapping multi-layered networks.

(a) Overlapping. (b) Non-overlapping.

Figure 1: Two types of multi-layered networks.
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MuLaNE Settings (Cont.)

Random Walk Exploration

• Each layer Li is associated with an explorer (or random walker) Wi and a fixed
starting distribution αi on nodes Vi .

• Explorer Wi starts on a node in Gi following the distribution αi ,
• Wi walks on network Gi following outgoing edges with probability proportional to

edge weights.
• Each random walk step will cost one unit of the budget1.

1Our model can be extended to move multiple steps with one unit of budget.
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MuLaNE Settings (Cont.)

Rewards
• Let Φ(i , ki ):=(Xi ,1, . . . ,Xi ,ki ) be the exploration trajectory for explorer Wi after

exploring ki nodes.

• The reward for Φ(i , ki ) is defined as the total weights of unique nodes visited by
Wi , i.e.,

∑
v∈

⋃ki
j=1{Xi,j}

σv .

• Considering trajectories of all Wi ’s, the total reward is the total weights of unique
nodes visited by all random walkers, i.e.,

∑
v∈

⋃m
i=1

⋃ki
j=1{Xi,j}

σv .

Given network G, starting distributions α and node weights σ, the expected total
reward for budget allocation k = (k1, ..., km) is

rG,α,σ(k):=EΦ(1,k1),...,Φ(m,km)

[∑
v∈

⋃m
i=1

⋃ki
j=1{Xi,j}

σv

]
, (1)
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The goal of MuLaNE

We aim to solve the following optimization problem,

Maximize rG,α,σ(k) s.t. k ∈ Zm
≥0 ≤ c ,

m∑
i=1

ki ≤ B, (2)

In real applications,

• different layers may have overlapping vertices (e.g., home-page of the same user
may appear in different OSNs), and αi ’s may or may not be stationary
distributions;

• The network G, the node weights σ and the starting distributions αi ’s may not be
known in advance.

In this paper, we provide a systematic study of all these settings.
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Equivalent Bipartite Coverage Model

To derive the explicit form of the reward function, we construct a bipartite coverage
graph B(W,V, E ′), where

• W = {W1, ...,Wm} are m random explorers,

• V =
⋃

i∈[m] Vi are all possible distinct nodes to be explored in G,

• the edge set E ′ indicates whether node u could be visited by Wi .
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Equivalent Bipartite Coverage Model (cont.)

Let Pi ,u(ki ) = Pr(u ∈ Φ(i , ki )) represents the probability that the node u is visited by
the random walker Wi given the budget ki .
By summing over all possible nodes, the reward function is

rG,α,σ(k) =
∑

u∈V σu

(
1−

∏
i∈[m] (1− Pi ,u(ki ))

)
(3)
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How to Derive the Explicit Form of Pi ,u(ki)?

We create absorbing Markov chains P i (u) ∈ Rni×ni by setting the target node u as
the absorbing node.

Pi ,u(ki ) = α>i P i (u)ki−1χu. (4)

• αi is the starting distribution of random walker Wi .

• χu = (0, ..., 0, 1, 0, ..., 0)> denotes the one-hot vector with 1 at the u-th entry and
0 elsewhere.

• Intuitively, P i (u) corresponds to the transition probability matrix of Gi after
removing all out-edges of u and adding a self loop to itself in the original graph Gi .
• P i (u)[v , ·] = χ>u if v = u and P i (u)[v , ·] = P i [v , ·] otherwise, where P i [v , ·]

denotes the row vector corresponding to the node v of P i .
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An Concrete Example

For example, the absorbing transition matrix by setting the node 2 as the target node

for layer 1. P1(2) =


0 2/5 0 0 0 0 0 3/5
0 1 0 0 0 0 0 0
...

. . .

3/9 4/9 0 0 0 0 2/9 0


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Properties of the Visiting Probability Pi ,u(ki)

Plugging in Eq. (4), our reward function is

rG,α,σ(k) =
∑

u∈V σu

(
1−

∏
i∈[m]

(
1−α>i P i (u)ki−1χu

))
.

• Still not easy to solve the problem given its explicit form.

• Idea: We can leverage on the submodular maximization technique and greedily
solve this problem approximately.

Properties of Pi ,u(ki).

• Pi ,u(ki ) is monotonic increasing. The more budgets, the higher probability that u
is visited.

• Define gi ,u(ki ) as the marginal gain of Pi ,u(ki ),

gi ,u(ki ) = Pi ,u(ki )− Pi ,u(ki − 1). (5)
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Properties of the visiting probability Pi ,u(ki) (Cont.)

Properties of Pi ,u(ki).

• gi ,u(ki ) is not necessarily monotonic decreasing for arbitrary distributions. There
may exist one critical step such that this step can increase Pi ,u(ki ) by a lot.
• This means that the simple greedy policy may not work.

(a) Barbell graph. (b) Marginal gain.

Figure 2: An example showing gi,u(ki ) and
∑

u gi,u(ki ) is not monotone.

• Stationary distributions are exceptions where we can further prove that the
marginal gain gi ,u(ki ) is always monotonic decreasing.
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Submodular and DR-submodular Property

• To solve the MuLaNE problem, we leverage on the submodular and
DR-submodular properties of the reward function.

• Function f : Zm
≥0 → R over the integer lattice Zm

≥0 is called a submodular 2

function iff for any x ∈ Zm
≥0 and i 6= j :

f (x + χj + χi )− f (x + χj) ≤ f (x + χi )− f (x). (6)

• Function f : Zm
≥0 → R is called a DR-submodular (diminishing return submodular)

function iff for any x ≤ y and i ∈ [m],

f (y + χi )− f (y) ≤ f (x + χi )− f (x). (7)

• Note that submodularity is weaker than DR-submodularity, that is, a
DR-submodular function is always a submodular function, but not vice versa.

2This is the equivalent condition proofed by this work, not the original condition f (x ∨ y) + f (x ∧ y) ≤ f (x) + f (y).
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Key Lemma for Arbitrary Distributions

For arbitrary starting distributions, we have the following lemma.

Lemma 1.
For any network G, distribution α and weights σ, rG,α,σ(·) : Zm

≥0 → R is monotone
and submodular.

• The intuition for submodularity: for layer i , the marginal gain is decreasing when
more budgets are allocated to other layers j ∈ [m]\i .
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Budget Effective Greedy Algorithm (BEG)

• Leveraging on the monotone submodular property, we design a Budget Effective
Greedy algorithm (BEG, Algorithm 1).
• Core: the greedy step and the final for loop.
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Budget Effective Greedy Algorithm (BEG) (cont.)

• Let δ(i , b, k) be the per-unit marginal gain (rG,α,σ(k + bχi )− rG,α,σ(k))/b for
allocating b more budgets to layer i , which equals to∑

u∈V σu
∏

j 6=i (1− Pj ,u(kj))(Pi ,u(ki + b)− Pi ,u(ki ))/b. (8)

• Each iteration greedily selects the (i , b) pair in Q such that the per-unit marginal
gain δ(i , b, k) is maximized.

• In the final for loop, we attempt to allocate all budgets to layer i and replace the
current best budget allocation if we have a larger reward3.

3This part is crucial to guarantee the solution quality in case that initial steps yield bad solutions. It also improves the time-consuming partial
enumeration procedure of the existing algorithm BEGE [Alon, Gamzu, and Tennenholtz 2012].
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Budget Effective Greedy Algorithm (BEG) (cont.)
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Theoretical Guarantee for BEG

Theorem 2.
Algorithm 1 obtains a (1− e−η) ≈ 0.357-approximate solution, where η is the solution
of equation eη = 2− η, to the overlapping MuLaNE problem.

• We provide a novel analysis with 0.357-approximation, which improves the
existing works [Khuller, Moss, and Naor 1999; Alon, Gamzu, and Tennenholtz
2012] with only 1

2 (1− e−1) ≈ 0.316 approximate solution.

• One can use partial enumeration [Alon, Gamzu, and Tennenholtz 2012] to get a
better (1− 1/e) approximation, but the time complexity is much higher (B3m3

times higher) than ours.
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Key Lemma for Stationary Distributions

For stationary distributions, we have another lemma.

Lemma 3.
For any network G, stationary distributions π and node weights σ, function
rG,π,σ,(·) : Zm

≥0 → R is monotone and DR-submodular.

• The intuition for DR-submodularity: the marginal gain is decreasing when more
budgets are allocated to any layers j ∈ [m] (including layer i itself).
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Myopic Greedy Algorithm (MG)

Since the reward function is DR-submodular, the BEG procedure can be replaced by
the simple MG procedure in Algorithm 2 with a better approximation ratio and better
time complexity.
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Theoretical guarantee for MG

Theorem 4.
Algorithm 2 obtains a (1− 1/e)-approximate solution to the overlapping MulaNE with
the stationary starting distributions.
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Non-overlapping Multi-layered Networks

For non-overlapping networks, since nodes between different layers do not overlap, we
can rewrite the reward function in Eq. (3) by

rG,α,σ(k) =
∑

i∈[m]

∑
u∈Vi σuPi ,u(ki ). (9)

We design a dynamic programming algorithm for arbitrary starting distributions and a
greedy algorithm for stationary distributions, each of which gives optimal solutions.
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Summary for Offline Optimization

The summary for offline models and algorithmic results are presented in the following
Table for further reference.

gi ,u(ki ) = Pi ,u(ki )− Pi ,u(ki − 1). (10)

.

Overlapping? Starting distribution Algorithm Apprx ratio Time complexity

X Arbitrary Budget Effective Greedy (1− e−η)4 O(B ‖c‖∞mnmax + ‖c‖∞mn3
max)

X Stationary Myopic Greedy (1− 1/e) O(Bmnmax + ‖c‖∞mn3
max)

× Arbitrary Dynamic Programming 1 O(B ‖c‖∞m + ‖c‖∞mn3
max)

× Stationary Myopic Greedy 1 O(B logm + ‖c‖∞mn3
max)

Table 1: Summary of the offline models and algorithms.

41− e−η ≈ 0.357, where η is the solution of eη = 2− η.
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Settings for Online Learning

• We consider T -round explorations.

• Before the exploration, we only know an upper bound of the total number of
nodes in G and the number of layers m.5

• We do not know about the network structure G, the starting distributions α or
node weights σ.

5More precisely we only need to know the number of independent explorers. If two explorers explore on the same layer, it is equivalent as two
layers with identical graph structures.
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Settings for Online Learning (cont.)

• In round t ∈ [T ], we choose the budget allocation k t :=(kt,1, . . . , kt,m) only based
on observations from previous rounds.

• After taking the action k t , the random explorer Wi , which is part of the
environment, would explore kt,i steps and generate the exploration trajectory
Φ(i , kt,i )=(Xi ,1, ...,Xi ,kt,i ).

• Reward: the total weights of unique nodes visited by all random explorers in round
t.
• Feedbacks:

• The exploration trajectory Φ(i , kt,i ) for each layer Li .
• The fixed importance weight σu of u ∈ Φ(i , kt,i )

6.

6We further consider random node weights with unknown mean vector σ in this paper.
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The Goal of Online MuLaNE

• Our goal: design an efficient online learning algorithm A to gain as much
cumulative reward as possible in T rounds.

• Exploration-exploitation trade-off.

• The cumulative regret as our evaluation metric.
Formally, the T -round ((ξ, β)-approximation) regret of A is:

RegG,α,σ(T )=ξβT · rG,α,σ(k∗)−E
[∑T

t=1 rG,α,σ(kA
t )
]
, (11)

where k∗is the optimal budget allocation, kA
t is the budget allocation selected by

A at t, the expectation is taken over the algorithm and the random trajectories.
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Our Idea to Handle the Unknown Networks

• For unknown networks and starting distributions, our idea is to bypass the
transition matrices P i and directly estimate the visiting probabilities
Pi ,u(b) ∈ [0, 1].

• Avoids the analysis for how the estimated P i affects the algorithm’s performance,
which could be unbounded because of the general graph structure and the reward
function that is highly non-linear in P i .

• Save the matrix calculation by directly using the estimated Pi,u(b).

• For the unknown weights, we maintain the optimistic weight σ̄u = 1 if u ∈ V has
not been visited, and replace σ̄u with the revealed σu after its first visit.
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CUCB-MAX Algorithm

• An adaptation of the combinatorial upper confidence bound algorithm
(CUCB) [Chen et al. 2016] to our setting.

• Base arms A = {(i , u, b)|i ∈ [m], u ∈ V, b ∈ [ci ]}, each of which maintains the
visiting probability µi ,u,b = Pi ,u(b).

• Offline oracle: BEG algorithm.
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CUCB-MAX Algorithm (cont.)
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Challenges for the Proof of Regrets

Two challenges.

• The BEG oracle only works when the inputs are monotonic increasing w.r.t b, but
random UCB values may not.

• We need to handle the additional regret caused by the optimistic weights σ̄u for
unrevealed node weights, while CUCB only considers regrets caused by the
unknown parameters of base arms.
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How to Guarantee the UCB Values are Monotonic Increasing?

• Since BEG can only output (1− e−η, 1)-approximation with monotone inputs, we
take the max in Line 8 (if UCB µ̄i ,u,b ≤ µ̄i ,u,b−1, then raise µ̄i ,u,b = µ̄i ,u,b−1) to
guarantee the UCB value is monotonic increasing w.r.t b.

• Combining the fact that the truth value is indeed increasing, we can bound the
regret.

• This technique can apply to other bandit algorithms when UCB values need to be
increasing.
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How to Handle the Over-estimated Node Weights?

We rely on the following property and a key observation.

Property 1.

(1-Norm Bounded Smoothness). The reward function rµ,σ(k) satisfies the 1-norm
bounded smoothness condition, i.e., for any budget allocation k , any two vectors
µ=(µi ,u,b)(i ,u,b)∈A, µ′=(µ′i ,u,b)(i ,u,b)∈A and any node weights σ, σ′, we have
|rµ,σ(k)− rµ′,σ′(k)| ≤

∑
i∈[m],u∈V,b=ki

(σu|µi ,u,b − µ′i ,u,b|+ |σu − σ′u|µ′i ,u,b).

• We bound |σu − σ′u|µ′i ,u,b term based on the observation that µ′i ,u,b is small and

decreasing quickly (µ′i ,u,b ∼ O( 1√
Ti,u,b

)) before u is first visited.
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Regret Guarantee for CUCB-MAX

Theorem 5.
Algorithm 3 has the following distribution-dependent (1− e−η, 1) approximation regret,

Regµ,σ(T ) ≤
∑

(i ,u,b)∈A
108m|V| lnT

∆i,u,b
min

+ 2|A|+ π2

3 |A|∆max. (12)

• Remark 1: O(logT ) regret is asymptotically tight. Coefficient m|V| corresponds
to the number of edges in the (unknown) complete bipartite coverage graph.

• Remark 2: The (1− e−η, 1) approximate regret is determined by the offline oracle
BEG. This regret can be replaced by (1− 1/e, 1) regret using BEGE or even the
exact regret if the oracle can obtain the optimal budget allocation.
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Online Learning for Non-overlapping MuLaNE

For the non-overlapping case, we set layer-wise marginal gains as our base arms.

• A = {(i , b)|i ∈ [m], b ∈ [ci ]}.
• µi ,b =

∑
u∈V σu(Pi ,u(b)− Pi ,u(b − 1)) is the marginal gain of assigning budget b

in layer i .

• Apply the standard CUCB algorithm.

• Use MG as our oracle.

• We can achieve the exact regret bound O(
∑

(i ,b)∈A 48B lnT/∆i ,b
min).



Motivation Problem Formulation Offline Optimization Online Learning Experiments Summary References

Dataset and Settings

FF-TW-YT (FriendFeed-Twitter-Youtube) dataset.

• m = 3 social network layers, 6,407 distinct nodes representing users and 74, 836
directed edges representing connections.

• Edge weight is set to be 1 and node weights are set to be σu ∈ {0, 0.5, 1}
uniformly at random.

• Three random walkers starting from a fixed node in each layer.

Table 2: Statistics for FF-TW-YT network

Layer FriendFeed Twitter YouTube

# of vertices 5,540 5,702 663
# of edges 31,921 42,327 614
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Experimental Results

(a) Offline,
overlapping.

(b) Offline,
non-overlapping.

(c) Online,
Handle overlapping.

(d) Online,
non-overlapping.

Figure 3: Left: total weights of unique nodes visited for offline algorithms. Right: regret for
online algorithms when B = 3000.

For offline settings, BEG is empirically close to the optimal solution.
For online settings, CUCB-MAX achieves the smallest regret.



Motivation Problem Formulation Offline Optimization Online Learning Experiments Summary References

Experimental Results (Cont.)

Figure 4: Computational Efficiency

BEG is computational efficient and is at least two orders magnitude faster than
BEGE/OPT.
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Conclusions and Future Work

• Formulates the MuLaNE as a budget allocation problem, requiring that the total
weights of distinct nodes visited are maximized.

• Propose algorithms for MuLaNE (offline or online) according to the multi-layered
network structure (overlapping or non-overlapping) and starting distributions
(arbitrary or stationary), each of which has a provable approximation factors,
running time or regret guarantee and are validated by experiments.
• Future directions:

• Jointly optimize starting distributions and budget allocation.
• Adaptive MuLaNE.
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Q&A

Thanks for listening!
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