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Few-shot learning with confidence

* Few-shot tasks are learning problems with severely limited training data.
* Making accurate predictions is challenging (or impossible).

* Predictions with well-calibrated probabilities are thus critical for many domains.

Our goal: quantify the uncertainty in few-shot predictions.
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Calibrated set-valued predictions

* Ensuring calibrated probabilities for each possible outcome is hard.

* |t can be more feasible and ultimately as useful to instead output a small set of
plausible answers—one of which is likely to be correct.

~— e.g.,a confidence interval.

* Formally, we seek a prediction set C(X) such that P(Y € C(X)) > 1 — ¢,
where the user is able to specify € (i.e., conformal inference).



An example (minilmageNet)

7

. ' Prediction set
Gordon Setter X: Test AL

~

{ Gordon Setter, Newfoundland }

4 )
Few-shot
“confidence” model

< J

French bulldog

{ Boxer }

{ French bulldog, Boxer}

’—_——___———

Few-shot training set



Conformal prediction framework

* Given n exchangeable examples (X}, Y;) € & X % and a desired significance level
e, for a new input X, . |, return a set of predictions C (X ,,) C ¥.

» A predictor is valid if C(X, . |) covers the correct label Y, . ; w.p. at least 1 — €

| (Yn+1 = Ce(Xn+1)) >1—e€

* An efficient predictor should satisfy:

= |G| < 1Y




Nonconformity measures

 Conformal prediction uses “nonconformity” scores to measure surprise.

* Basic idea: if | assign a possible label to a given input, how strange does it look
relative to other examples from my dataset that | know are correct!?

 Ifitis relatively strange, it is considered to be nonconforming to the dataset.

(to be defined)-
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Constructing conformal sets

* For each candidate label y, we compute a nonconformity score to quantify
how “surprising” the pairing (X,,; = x,,(, Y,.; =) would be.

* For each candidate y € %, we accept or reject it based on its nonconformity score,
Vrgﬁ), compared to the | — ¢ quantile of exchangeable calibration scores, Vl(?cr’ly) :

C.(x) = {y €EY: Vr(l’_ﬁ) < Quantile(1 — ¢; Vl(f,jly) U {oo}}

o Thm (Vovk et.al.): the true Y, . ; is covered at least (1 — €)-fraction of the time.




Challenges of few-shot conformal prediction

* Good nonconformity models are hard to train with few examples.
* Empirical quantiles with few points can be conservative (large step sizes).

* |Leads to uninformative prediction sets with poor statistical efficiency.



Appealing to auxiliary tasks

* A popular approach to few-shot learning is meta-learning using auxiliary tasks.

* By being exposed to a set of similar tasks,a model can learn to learn quickly
on a target task with much less in-domain data.

* We cast conformal prediction as a meta-learning paradigm over exchangeable
collections of tasks to obtain tight prediction sets with few examples.



Meta-learning: two levels of exchangeability

* Assume that we do not have that much data for a target task 7 + 1 (kK examples).

* But, we have data for f auxiliary tasks (other classes, regression targets...).

e Assume that tasks are exchangeable (i.e., P(T},...,T, ) = P(T ), ..., T,041))-

e Assume that in-task examples are exchangeable (i.e., P(X/,...., X" = P(X", ..., X7*+D)),

< o H_ :
, 1 k +1 1 k+1 k+1
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(with extra m, > k examples per task)




Conformal prediction over exchangeable tasks

+ Let task 7, be the target task with a desired prediction on X'$¥ := X*1.

+ A relaxed view of validity: conformal predictor ./ (X'Y) is valid across tasks if

l (Ytest = %G(Xtest ) > 1 —¢.

+1 +1

~— Randomness is over task and task examples.

This work: create a conformal predictor that is valid (on average) on task 1, ;.



Few-shot meta conformal prediction

o Step I: meta-learn and meta-calibrate a meta nonconformity measure
and meta quantile predictor over a set of auxiliary tasks.

e Step 2: adapt the meta nonconformity measure to the new task using the
few-shot in-domain data and meta-learning algorithm.

e Step 3: predict the 1 — € quantile of the new task’s meta nonconformity
scores using the meta quantile predictor, given the few-shot in-domain data.

o Step 4: keep all labels y € % whose meta nonconformity scores for input
x € A are below the predicted (and adjusted) quantile, Q.. + A(1 — €, 1,)).
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Meta-learning a nonconformity measure

* Generalizes to any meta-learning frameworlk (MAML,R2D2, ...).

A set of meta parameters, 0., are learned over auxiliary training tasks [ .. .
v

| ta CaN be fixed or adapted symmetrically, as long as it preserves exchangeability.
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Meta-learning a quantile predictor

* We want to know the 1 — € quantile of the new task’s nonconformity scores, but
we don’t have enough data to directly estimate it empirically.

* Auxiliary tasks can help us learn a prior and model to predict it directly.

* Wrong! No problem! We calibrate the predictor to account for error margins.

» f=0.8

0.56




Meta calibration (sketch)

* Let F, be the true distribution function of task 7°’s nonconformity scores.

Assume F’ is known for calibration tasks /_, only (we relax this to work with F m)-

* A valid f-quantile prediction, Qi, should satisfy Fi(Ql-) > P.

* We account for any error in the predicted quantile via a calibration term:

ZF(Q+/1)>,B}

lel

AP, 1.,) = 1nt {/1

| al‘

* ... and use the calibrated prediction Qtﬂ + A(l — €, 1) for the target task.



Contributions

* We prove in our paper that our algorithm provides valid conformal
predictions (on average) across tasks.

* Given a consistent quantile predictor, we further prove asymptotic
conditional validity for any particular target task, 7,. ; = ¢, ;.

* We prove additional performance bounds when some uncertainties due to
calibration task data sampling need to be accounted for.

* See paper for strong empirical results on few-shot image classification,
natural language processing, and computational chemistry tasks.



Conclusion

* Providing precise performance guarantees and confidence-aware predictions is a
critical element for many real-world machine learning applications.

* Conformal prediction can afford remarkable theoretical guarantees, but suffers in
practice when data is limited (as in few-shot problems).

* We provide a novel and theoretically grounded approach to meta-learning
conformal prediction, and show consistent improvements across
multiple, diverse domains and applications.



Thank you!

Checkout our other work on principled & practical DF-UQ at the poster sessions:

» “Efficient Conformal Prediction via Cascaded Inference with Expanded Admission”

- Building C.(X,. ) can be slow for large label spaces % using expensive nonconf. measures.
- In open-ended problems with large output spaces, the target Y, . ; can be nonunique.

- Solution: prediction cascades (simple—complex models) with a calibration twist.

* “"Consistent Accelerated Inference via Confident Adaptive Transformers”

- Multi-layered models are slow; predictions can often be made at intermediate layers with “early exit”.

- How to ensure that the predictions are consistent, i.e., P(fou1y(X,,11) = frun(X,41)) 2 1 — €?

- Solution: use conformal inference to identify a conservative set of consistent layers + pick the first.



