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Few-shot learning with confidence
• Few-shot tasks are learning problems with severely limited training data.


• Making accurate predictions is challenging (or impossible).


• Predictions with well-calibrated probabilities are thus critical for many domains.

Our goal: quantify the uncertainty in few-shot predictions.
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Calibrated set-valued predictions
• Ensuring calibrated probabilities for each possible outcome is hard.


• It can be more feasible and ultimately as useful to instead output a small set of 
plausible answers—one of which is likely to be correct. 
 
 

• Formally, we seek a prediction set  such that ,  
where the user is able to specify  (i.e., conformal inference).

C(X) ℙ(Y ∈ C(X)) ≥ 1 − ϵ
ϵ

e.g., a confidence interval.



An example (miniImageNet)



Conformal prediction framework
• Given  exchangeable examples  and a desired significance level 

, for a new input , return a set of predictions . 

• A predictor is valid if  covers the correct label  w.p.  at least : 
 
 

• An efficient predictor should satisfy:

n (Xi, Yi) ∈ 𝒳 × 𝒴
ϵ Xn+1 Cn(Xn+1) ⊆ 𝒴

Cϵ(Xn+1) Yn+1 1 − ϵ

ℙ (Yn+1 ∈ Cϵ(Xn+1)) ≥ 1 − ϵ

𝔼 [ |Cϵ(Xn+1) |] ≪ |𝒴 |



• Conformal prediction uses “nonconformity” scores to measure surprise.


• Basic idea:  if I assign a possible label to a given input, how strange does it look 
relative to other examples from my dataset that I know are correct?


• If it is relatively strange, it is considered to be nonconforming to the dataset.  

Nonconformity measures

Can be any f : known pairs × new pair → ℝ

(to be defined)



Constructing conformal sets
• For each candidate label , we compute a nonconformity score to quantify 

how “surprising” the pairing  would be. 

• For each candidate , we accept or reject it based on its nonconformity score, 
, compared to the  quantile of exchangeable calibration scores,  : 

 
 

• Thm (Vovk et. al.): the true  is covered at least -fraction of the time.

y
(Xn+1 = xn+1, Yn+1 = y)

y ∈ 𝒴
V(x,y)

n+1 1 − ϵ V(x,y)
1:n

Yn+1 (1 − ϵ)

Cϵ(x) := {y ∈ 𝒴 : V(x,y)
n+1 ≤ Quantile(1 − ϵ; V(x,y)

1:n ∪ {∞}}



Challenges of few-shot conformal prediction
• Good nonconformity models are hard to train with few examples. 


• Empirical quantiles with few points can be conservative (large step sizes).


• Leads to uninformative prediction sets with poor statistical efficiency.



Appealing to auxiliary tasks
• A popular approach to few-shot learning is meta-learning using auxiliary tasks.


• By being exposed to a set of similar tasks, a model can learn to learn quickly 
on a target task with much less in-domain data.


• We cast conformal prediction as a meta-learning paradigm over exchangeable 
collections of tasks to obtain tight prediction sets with few examples.



Meta-learning: two levels of exchangeability
• Assume that we do not have that much data for a target task  (  examples).


• But, we have data for  auxiliary tasks (other classes, regression targets…).


• Assume that tasks are exchangeable (i.e., ).


• Assume that in-task examples are exchangeable (i.e., ).

t + 1 k

t
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Meta-train + calibration tasks 
(with extra  examples per task)mi ≫ k

Transfer target 



Conformal prediction over exchangeable tasks
• Let task  be the target task with a desired prediction on .


• A relaxed view of validity:  conformal predictor  is valid across tasks if 

Tt+1 Xtest
t+1 := Xk+1

t+1

ℳϵ(Xtest
t+1)

This work: create a conformal predictor that is valid (on average) on task .Tt+1

Randomness is over task and task examples.

ℙ(Y test
t+1 ∈ ℳϵ(Xtest

t+1)) ≥ 1 − ϵ .



Few-shot meta conformal prediction

• Step 1:  meta-learn and meta-calibrate a meta nonconformity measure 
and meta quantile predictor over a set of auxiliary tasks. 

• Step 2:  adapt the meta nonconformity measure to the new task using the 
few-shot in-domain data and meta-learning algorithm. 

• Step 3:  predict the  quantile of the new task’s meta nonconformity 
scores using the meta quantile predictor, given the few-shot in-domain data. 

• Step 4:  keep all labels  whose meta nonconformity scores for input 
 are below the predicted (and adjusted) quantile, .

1 − ϵ

y ∈ 𝒴
x ∈ 𝒳 Q̂t+1 + Λ(1 − ϵ, Ical)
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Meta-learning a nonconformity measure
• Generalizes to any meta-learning framework (MAML, R2D2, …).


• A set of meta parameters, , are learned over auxiliary training tasks . 
 can be fixed or adapted symmetrically, as long as it preserves exchangeability. 

θmeta Itrain
θmeta



Meta-learning a quantile predictor
• We want to know the  quantile of the new task’s nonconformity scores, but 

we don’t have enough data to directly estimate it empirically.


• Auxiliary tasks can help us learn a prior and model to predict it directly.


• Wrong? No problem!  We calibrate the predictor to account for error margins.

1 − ϵ



Meta calibration (sketch)
• Let  be the true distribution function of task ’s nonconformity scores.  

Assume  is known for calibration tasks  only (we relax this to work with ).

• A valid -quantile prediction, , should satisfy .


• We account for any error in the predicted quantile via a calibration term: 
 
 
 

• … and use the calibrated prediction  for the target task. 

Fi Ti
Fi Ical

̂Fmi

β Q̂i Fi(Q̂i) ≥ β

Q̂t+1 + Λ(1 − ϵ, Ical)

Λ(β, Ical) = inf {λ :
1

| Ical | + 1 ∑
i∈Ical

Fi(Q̂ + λ) ≥ β}



Contributions
• We prove in our paper that our algorithm provides valid conformal 

predictions (on average) across tasks.

• Given a consistent quantile predictor, we further prove asymptotic 
conditional validity for any particular target task, .


• We prove additional performance bounds when some uncertainties due to 
calibration task data sampling need to be accounted for.


• See paper for strong empirical results on few-shot image classification, 
natural language processing, and computational chemistry tasks. 
 

Tt+1 = tt+1



Conclusion
• Providing precise performance guarantees and confidence-aware predictions is a 

critical element for many real-world machine learning applications.


• Conformal prediction can afford remarkable theoretical guarantees, but suffers in 
practice when data is limited (as in few-shot problems).


• We provide a novel and theoretically grounded approach to meta-learning 
conformal prediction, and show consistent improvements across 
multiple, diverse domains and applications.



Thank you!
Checkout our other work on principled & practical DF-UQ at the poster sessions:


• “Efficient Conformal Prediction via Cascaded Inference with Expanded Admission”


- Building  can be slow for large label spaces  using expensive nonconf. measures.


- In open-ended problems with large output spaces, the target  can be nonunique.


- Solution: prediction cascades (simple complex models) with a calibration twist. 

• “Consistent Accelerated Inference via Confident Adaptive Transformers”


- Multi-layered models are slow; predictions can often be made at intermediate layers with “early exit”.


- How to ensure that the predictions are consistent, i.e., ?


- Solution: use conformal inference to identify a conservative set of consistent layers + pick the first.

Cϵ(Xn+1) 𝒴

Yn+1

→

ℙ( fearly(Xn+1) = ffull(Xn+1)) ≥ 1 − ϵ


