Incentivized Bandit Learning with Self-Reinforcing User Preferences

Tianchen Zhou

Dept. of Electrical and Computer Engineering The Ohio State University

Joint work with Jia Liu, Chaosheng Dong and Jingyuan Deng

June 19, 2021

Motivation: Online Recommender Systems

\$299.99

Acer 27" Class Curved WQHD FreeSync Gaming Monitor ★★★★★ (319)

Acer 24" Class ConceptD FHD IPS Widescreen Monitor ★★★★★ (6)

Motivation: Online Recommender Systems

\$299.99

Acer 27" Class Curved WQHD FreeSync Gaming Monitor ★★★★★ (319)

Acer 24" Class ConceptD FHD IPS Widescreen Monitor

★★★★★ (6)

Challenges and Contributions

Challenges:

- Unknown optimal product.
- Balance between exploration and exploitation.
- Induce user preferences to one product with low incentives.

Challenges and Contributions

Challenges:

- Unknown optimal product.
- Balance between exploration and exploitation.
- Induce user preferences to one product with low incentives.

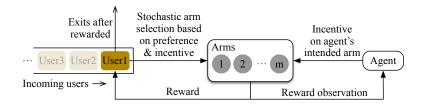
Contributions:

- A new MAB model with random arm selection that considers the relationship of self-reinforcing preferences and incentives.
- Two policies termed "At- Least-n Explore-Then-Commit" and "UCB-List", both achieve O(log T) expected regret with O(log T) expected incentive over a time horizon T.

Related Work

- Self-reinforcing preferences
 - Preferential attachment [Barabasi et al. 1999]
 - Modeling by multinomial logit model
 - Convergence to one action in social network [Acemoglu et al. 2011]
 - Positive externalities [Shah et al. 2018]
 - Incorporated in MAB framework and proposed optimal algorithms
 - Full control of arm selection
 - Balls and bins models with feedback [Drinea et al. 2002]
 - Convergence under various feedback functions
- Incentivized MAB
 - Adopted incentive schemes into Bayesian MAB [Frazier et al. 2014]
 - Non-Bayesian setting with non-discounted rewards [Wang et al. 2018]
- Bandit with budgets: the budget constraints are pre-determined
 - Approximation algorithms for a large class of budgeted learning problems [Guha et al. 2007]
 - Index-based algorithms [Goel et al. 2009]

Modeling



Preference on arm *a* at time *t*:

$$\lambda_a(t) = \frac{F(S_a(t-1) + \theta_a)}{\sum_{i \in A} F(S_i(t-1) + \theta_i)},$$

- $F(\cdot)$: unknown feedback function
- θ_a : unknown initial bias

Incentive Impact on Preference:

$$\hat{\Lambda}_i(t) = egin{cases} rac{G(b,t)+\lambda_i(t)}{G(b,t)+1}, & i=a, \ rac{\lambda_i(t)}{G(b,t)+1}, & i
eq a. \end{cases}$$

- $G(\cdot)$: unknown incentive impact

Policies: Basic Idea

Structure of the three-phased policies:

- **Exploration:** Incentivize arm exploration until finding a best-empirical arm \hat{a}^* .
- **2** Exploitation: Incentivize pulling arm \hat{a}^* until it dominates.
- **3** Self-Sustaining: Users pull arms based on their preferences until *T*.

Remark

- After exploitation, for certain *F*(·), arm *â*^{*} is expected to dominate and proved to have exponentially increasing probability to "win" in the monopoly.
- The incentive stops after exploitation, which is proved $O(\log T)$, thus $\mathbb{E}[B_T] = O(\log T)$.

Policies: Basic Idea

At-Least-n Explore-Then-Commit:

- **Exploration**: Evenly incentivize arms until each arm generates at least *n* accumulative reward.
- **2** Exploitation: Incentivize pulling arm \hat{a}^* until it dominates.
- **3** Self-Sustaining: Users pull arms based on their preferences until *T*.

Remark

- After exploitation, for certain *F*(·), arm *â*^{*} is expected to dominate and proved to have exponentially increasing probability to "win" in the monopoly.
- The incentive stops after exploitation, which is proved $O(\log T)$, thus $\mathbb{E}[B_T] = O(\log T)$.

Policies: Basic Idea

UCB-List:

- **Exploration:** Evenly incentivize arms. Meanwhile, eliminate all arms that have bad upper confidence bound.
- **2** Exploitation: Incentivize pulling arm \hat{a}^* until it dominates.
- **3** Self-Sustaining: Users pull arms based on their preferences until *T*.

Remark

- After exploitation, for certain *F*(·), arm *â*^{*} is expected to dominate and proved to have exponentially increasing probability to "win" in the monopoly.
- The incentive stops after exploitation, which is proved $O(\log T)$, thus $\mathbb{E}[B_T] = O(\log T)$.

Policies: Upper bounds of Regret and Incentive

At-Least-*n* Explore-Then-Commit:

$$\mathbb{E}[R_T] \leq \sum_{a \in A} \frac{2(G(b,t) - L_{a^*})\Delta_{max}}{(G(b,t) - 1)\mu_a} \cdot q \ln T + o(\log T),$$
$$\mathbb{E}[B_T] \leq \sum_{a \neq a^*} \frac{2b(G(b,t) + 1)}{\mu_a(G(b,t) - 1)} \cdot q \ln T.$$

$$\mathbb{E}[R_T] \leq \sum_{a \neq a^*} \left[\frac{8\Delta_a \big(G(b,t) - 1 \big) + 8\Delta_{max}}{\big(G(b,t) - 1 \big) \Delta_a^2} \ln T + 4\Delta_a + \frac{4\Delta_{max}}{G(b,t) - 1} \right],$$
$$\mathbb{E}[B_T] \leq \frac{2G(b,t) + 1}{G(b,t) - 1} \left[\frac{8b \ln T}{\Delta_{min}^2} + \sum_{a \neq a^*} \left(\frac{8b \ln T}{\Delta_a^2} + 4b \right) \right].$$

Remark

LICE

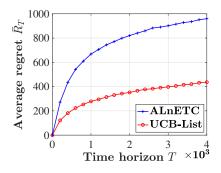
Both achieve $O(\log T)$ expected regret with $O(\log T)$ expected incentive.

Tianchen Zhou (OSU ECE)

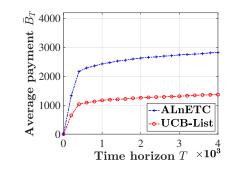
Simulations

Up to time *T*:

- Expected Regret $\mathbb{E}[R_T]$:



- Expected incentive $\mathbb{E}[B_T]$:



Thanks!