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Challenges and Contributions

Challenges:

Unknown optimal product.

Balance between exploration and exploitation.

Induce user preferences to one product with low incentives.

Contributions:

A new MAB model with random arm selection that considers the
relationship of self-reinforcing preferences and incentives.

Two policies termed “At- Least-n Explore-Then-Commit” and
“UCB-List”, both achieve O(log T) expected regret with O(log T)
expected incentive over a time horizon T .
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Related Work

Self-reinforcing preferences
Preferential a�achment [Barabasi et al. 1999]

– Modeling by multinomial logit model
– Convergence to one action in social network [Acemoglu et al. 2011]

Positive externalities [Shah et al. 2018]
– Incorporated in MAB framework and proposed optimal algorithms
– Full control of arm selection

Balls and bins models with feedback [Drinea et al. 2002]
– Convergence under various feedback functions

Incentivized MAB
– Adopted incentive schemes into Bayesian MAB [Frazier et al. 2014]
– Non-Bayesian se�ing with non-discounted rewards [Wang et al. 2018]

Bandit with budgets: the budget constraints are pre-determined
– Approximation algorithms for a large class of budgeted learning

problems [Guha et al. 2007]
– Index-based algorithms [Goel et al. 2009]
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Modeling
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Preference on arm a at time t:

λa(t) =
F
(
Sa(t − 1) + θa

)∑
i∈A F

(
Si(t − 1) + θi

),
– F(·): unknown feedback function

– θa: unknown initial bias

Incentive Impact on Preference:

λ̂i(t) =


G(b, t) + λi(t)
G(b, t) + 1

, i = a,

λi(t)
G(b, t) + 1

, i 6= a.

– G(·): unknown incentive impact
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Policies: Basic Idea

Structure of the three-phased policies:

1 Exploration: Incentivize arm exploration until finding a best-empirical
arm â∗.

2 Exploitation: Incentivize pulling arm â∗ until it dominates.

3 Self-Sustaining: Users pull arms based on their preferences until T .

Remark

A�er exploitation, for certain F(·), arm â∗ is expected to dominate and
proved to have exponentially increasing probability to “win” in the
monopoly.

The incentive stops a�er exploitation, which is proved O(log T), thus
E[BT ] = O(log T).
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Policies: Basic Idea

At-Least-n Explore-Then-Commit:

1 Exploration: Evenly incentivize arms until each arm generates at least
n accumulative reward.

2 Exploitation: Incentivize pulling arm â∗ until it dominates.
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Policies: Basic Idea

UCB-List:

1 Exploration: Evenly incentivize arms. Meanwhile, eliminate all arms
that have bad upper confidence bound.

2 Exploitation: Incentivize pulling arm â∗ until it dominates.

3 Self-Sustaining: Users pull arms based on their preferences until T .

Remark

A�er exploitation, for certain F(·), arm â∗ is expected to dominate and
proved to have exponentially increasing probability to “win” in the
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Policies: Upper bounds of Regret and Incentive

At-Least-n Explore-Then-Commit:

E[RT ] ≤
∑
a∈A

2(G(b, t)− La∗)∆max(
G(b, t)− 1

)
µa

· q ln T + o(log T),

E[BT ] ≤
∑
a 6=a∗

2b(G(b, t) + 1)
µa(G(b, t)− 1)

· q ln T .

UCB-List:

E[RT ] ≤
∑
a 6=a∗

[8∆a
(
G(b, t)− 1

)
+ 8∆max(

G(b, t)− 1
)
∆2

a
ln T + 4∆a +

4∆max

G(b, t)− 1

]
,

E[BT ] ≤
2G(b, t) + 1
G(b, t)− 1

[8b ln T
∆2

min
+
∑
a 6=a∗

(8b ln T
∆2

a
+ 4b

)]
.

Remark

Both achieve O(log T) expected regret with O(log T) expected incentive.
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Simulations

Up to time T :

– Expected Regret E[RT ]:
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Thanks!
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