Tesseract: Tensorised Actors for Multi-agent Reinforcement Learning

Anuj Mahajan, Mikayel Samvelyan, Lei Mao, Viktor Makoviychuk, Animesh Garg, Jean Kossaifi, Shimon Whiteson, Yuke Zhu, Animashree Anandkumar

Tesseract motivation

- Cooperative Multi Agent Reinforcement Learning (MARL) suffers from action space blow-up.
- For value-based methods: Poses challenges in accurately representing the optimal value function, thus inducing suboptimality.
- For policy gradient methods: Renders critic ineffective and exacerbates the problem of the lagging critic.
- Similar challenges for model-based methods.

Tesseract idea

- Main idea : A framework to exploit tensor structure in MARL problems for sample efficient learning.
- Q-function seen as a tensor where the modes correspond to action spaces of different agents.
- Applicable to any factorizable action-space

Background Multi Agent Reinforcement Learning (MARL)
 Notation:

- S is the set of states
- U the set of available actions per agent
- agents $i \in \mathcal{A} \equiv\{1, \ldots, n\}$
- joint action $\mathbf{u} \in \mathbf{U} \equiv U^{n}$
- $P\left(s^{\prime} \mid s, \mathbf{u}\right): S \times \mathbf{U} \times S \rightarrow[0,1]$ is the state transition function
- $r(s, \mathbf{u}): S \times \mathbf{U} \rightarrow \mathbb{R}$ is the reward function
- observations $z \in Z$ according to observation distribution $O(s): S \times \mathcal{A} \rightarrow \mathcal{P}(Z)$.
- γ is discount factor
- action-observation history for an agent i is

$$
\tau^{i} \in T \equiv(Z \times U)^{*}
$$

MARL problem continued

$$
Q^{\pi}\left(z_{t}, \mathbf{u}_{t}\right)=\mathbb{E}_{z_{t+1: \infty}, \mathbf{u}_{t+1: \infty}}\left[\sum_{k=0}^{\infty} \gamma^{k} r_{t+k} \mid z_{t}, \mathbf{u}_{t}\right]
$$

The goal of the problem is to find the optimal action value function Q^{*} and the corresponding policy π^{*}.

Figure 1: Example MARL scenario

Settings in Multi Agent Reinforcement Learning

Figure 2: MARL settings w.r.t observability

- MMDP : $\langle S, U, P, r, n, \gamma\rangle$ Bijective map $O: \mathcal{S} \rightarrow Z$
- M-ROMDP : $\langle S, U, P, r, Z, O, n, \gamma\rangle$, where we require that the joint observation space is partitioned w.r.t. S ie. $\forall s_{1}, s_{2} \in S \wedge z \in Z, P\left(z \mid s_{1}\right)>0 \wedge s_{1} \neq s_{2} \Longrightarrow P\left(z \mid s_{2}\right)=0$.
- M-POMDP : $\langle S, U, P, r, Z, O, n, \gamma\rangle$
- Note that for latter two we assume $|Z| \gg|S|$.

Tensors intro

- Tensors are high dimensional analogues of matrices
- Tensor decomposition, in particular, generalize the concept of low-rank matrix factorization
- Notation $\hat{\text { • to represent tensors }}$
- An order n tensor \hat{T} has n index sets $I_{j}, \forall j \in\{1 . . n\}$ and has elements $T(e), \forall e \in \times_{\mathcal{I}} I_{j}$

Figure 3: Left: Tensor diagram for an order 3 tensor \hat{T}. Right: Contraction between \hat{T}^{1}, \hat{T}^{2} on common index sets I_{2}, I_{3}.

Tensors intro

- Tensor contraction: For any two tensors \hat{T}^{1} and \hat{T}^{2} with $\mathcal{I}_{n}=\mathcal{I}^{1} \cap \mathcal{I}^{2}$ we define the contraction operation as $\hat{T}^{1} \odot \hat{T}^{2}\left(e_{1}, e_{2}\right)=\sum_{e \in \times_{I_{n}}{ }_{j}} \hat{T}^{1}\left(e_{1}, e\right) \cdot \hat{T}^{2}\left(e_{2}, e\right), e_{i} \in$ $\times_{\mathcal{I}^{\prime} \backslash \mathcal{T}_{n}} l_{j}$.
- A tensor \hat{T} can be factorized using a (rank-k) CP decomposition into a sum of k vector outer products (denoted by \otimes), as,

$$
\begin{equation*}
\hat{T}=\sum_{r=1}^{k} w_{r} \otimes^{n} u_{r}^{i}, i \in\{1 . . n\},\left\|u_{r}^{i}\right\|_{2}=1 . \tag{1}
\end{equation*}
$$

Tensorising the Q-function

- Given a multi-agent problem G, let $\mathcal{Q} \triangleq\left\{Q: S \times U^{n} \rightarrow \mathbb{R}\right\}$ be the set of real-valued functions on the state-action space
- Focus on the Curried form $Q: S \rightarrow U^{n} \rightarrow \mathbb{R}, Q \in \mathcal{Q}$ so that $Q(s)$ is an order n tensor
- Algorithms in Tesseract operate directly on the curried form and preserve the structure implicit in the Q tensor.

Tensorised Bellman Equation

- Components of the underlying MARL problem can be seen as tensors given a state (denoted with \uparrow).
- Modes correspond to action spaces of different agents

Figure 4: Tensor Bellman Equation for n agents. There is an edge for each agent $i \in \mathcal{A}$ in the corresponding nodes $\hat{Q}^{\pi}, \hat{U}^{\pi}, \hat{R}, \hat{P}$ with the index set U^{i}.

Algorithm 1 Model-based Tesseract

1: Initialise rank $k, \pi=\left(\pi^{i}\right)_{1}^{n}$ and \hat{Q} : Theorem 3
2: Initialise model parameters \hat{P}, \hat{R}
3: Learning rate $\leftarrow \alpha, \mathcal{D} \leftarrow\{ \}$
4: for each episodic iteration i do
5: \quad Do episode rollout $\tau_{i}=\left\{\left(s_{t}, \mathbf{u}_{t}, r_{t}, s_{t+1}\right)_{0}^{L}\right\}$ using π
6: $\quad \mathcal{D} \leftarrow \mathcal{D} \cup\left\{\tau_{i}\right\}$
7: Update \hat{P}, \hat{R} using CP-Decomposition on moments from \mathcal{D} (Theorem 3)
8: \quad for each internal iteration j do
9: $\quad \hat{Q} \leftarrow \mathcal{T}^{\pi} \hat{Q}$
10: end for
11: Improve π using \hat{Q}
12: end for
13: Return π, \hat{Q}

Theorems for MMDP

Theorem (Bounding rank of \hat{Q})

For a finite MMDP under mild assumptions, the action-value tensor satisfies $\operatorname{rank}\left(\hat{Q}^{\pi}(s)\right) \leq k_{1}+k_{2}|S|, \forall s \in S, \forall \pi$.

Corollary

For all $k \geq k_{1}+k_{2}|S|$, the procedure $Q_{t+1} \leftarrow \Pi_{k} \mathcal{T}^{\pi} Q_{t}$ converges to Q^{π} for all Q_{0}, π.

Theorems for MMDP

- Rank sufficient approximation $k \geq k_{1}, k_{2}$

Theorem (Model based estimation of \hat{R}, \hat{P} error bounds)

Given any $\epsilon>0,1>\delta>0$, for a policy π with the policy tensor satisfying $\pi(\mathbf{u} \mid s) \geq \Delta$, where

$$
\Delta=\max _{s} \frac{C_{1} \mu_{s}^{6} k^{5}\left(w_{s}^{\max }\right)^{4} \log (|U|)^{4} \log \left(3 k| | R(s) \|_{F} / \epsilon\right)}{|U|^{n / 2}\left(w_{s}^{\min }\right)^{4}}
$$

and C_{1} is a problem dependent positive constant. There exists N_{0} which is $O\left(|U|^{\frac{n}{2}}\right)$ and polynomial in $\frac{1}{\delta}, \frac{1}{\epsilon}, k$ and relevant spectral properties of the underlying MDP dynamics such that for samples $\geq N_{0}$, we can compute the estimates $\bar{R}(s), \bar{P}\left(s, s^{\prime}\right)$ such that w.p. $\geq 1-\delta$, $\|\bar{R}(s)-\hat{R}(s)\|_{F} \leq \epsilon,\left\|\bar{P}\left(s, s^{\prime}\right)-\hat{P}\left(s, s^{\prime}\right)\right\|_{F} \leq \epsilon, \forall s, s^{\prime} \in S$.

Theorems for MMDP

Theorem (Error bound on policy evaluation)

Given a behaviour policy π_{b} satisfying the conditions in the theorem above and executed for steps $\geq N_{0}$, for any policy π the model based policy evaluation $Q_{\bar{P}, \bar{R}}^{\pi}$ satisfies:

$$
\begin{aligned}
\left|Q_{P, R}^{\pi}(s, a)-Q_{\bar{P}, \bar{R}}^{\pi}(s, a)\right| \leq & (|1-f|+f|S| \epsilon) \frac{\gamma}{2(1-\gamma)^{2}} \\
& +\frac{\epsilon}{1-\gamma}, \forall(s, a) \in S \times U^{n}
\end{aligned}
$$

where $\frac{1}{1+\epsilon|S|} \leq f \leq \frac{1}{1-\epsilon|S|}$.

Comments

- Similar results can be obtained for M-POMDPs and M-ROMDPs with some conditions on the observation distribution (no information loss).
- $O\left(k n|U \| S|^{2}\right)$ parameters for the model based approach, for large/continuous state-action spaces the tensor structure can be embedded in a model free manner (next)

Model free Tesseract

Figure 5: Tesseract architecture

- The joint action-value estimate of the tensor $\hat{Q}(s)$ by the central critic is:

$$
\begin{equation*}
\hat{Q}^{\pi}(s) \approx \sum_{r=1}^{k} w_{r}^{i} \otimes^{n} g_{\phi, r}\left(s^{i}\right), i \in\{1 . . n\} \tag{2}
\end{equation*}
$$

Algorithm 2 Model free Tesseract

Initialise parameter vectors θ, ϕ, η
Learning rate $\leftarrow \alpha, \mathcal{D} \leftarrow\{ \}$
for each episodic iteration i do
Do episode rollout $\tau_{i}=\left\{\left(s_{t}, \mathbf{u}_{t}, r_{t}, s_{t+1}\right)_{0}^{L}\right\}$ using π_{θ}
$\mathcal{D} \leftarrow \mathcal{D} \cup\left\{\tau_{i}\right\}$
Sample batch $\mathcal{B} \subseteq \mathcal{D}$.
Compute empirical estimates for $\mathcal{L}_{T D}, \mathcal{J}_{\theta}$
$\phi \leftarrow \phi-\alpha \nabla_{\phi} \mathcal{L}_{\text {TD }}$ (Rank k projection step)
$\eta \leftarrow \eta-\alpha \nabla_{\eta} \mathcal{L}_{T D}$ (Action representation update)
$\theta \leftarrow \theta+\alpha \nabla_{\theta} \mathcal{J}_{\theta}$ (Policy update)
end for
Return π, \hat{Q}

StarCraft II: SMAC Experiments

(a) $3 s 5 z$ Easy

(c) 2c_vs_64zg Hard

(b) 2s_vs_1sc Easy

(d) 5m_vs_6m Hard

Figure 6: Performance of different algorithms on Easy and Hard SMAC scenarios: TAC, QMIX, VDN, FQL, IQL.

StarCraft II: SMAC Experiments

(a) MMM2 Super Hard

(c) 6h_vs_8z Super Hard

(b) 27m_vs_30m Super Hard

(d) Corridor Super Hard

Figure 7: Performance of different algorithms on Super Hard SMAC scenarios: TAC, QMIX, VDN, FQL, IQL.

Thanks! Questions?

Talk Slides: anuj-mahajan.github.io/talks Arxiv version: arxiv.org/pdf/2106.00136.pdf

