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Tesseract motivation

I Cooperative Multi Agent Reinforcement Learning (MARL)
suffers from action space blow-up.

I For value-based methods: Poses challenges in accurately
representing the optimal value function, thus inducing
suboptimality.

I For policy gradient methods: Renders critic ineffective and
exacerbates the problem of the lagging critic.

I Similar challenges for model-based methods.



Tesseract idea

I Main idea : A framework to exploit tensor structure in MARL
problems for sample efficient learning.

I Q-function seen as a tensor where the modes correspond
to action spaces of different agents.

I Applicable to any factorizable action-space



Background Multi Agent Reinforcement Learning
(MARL)

Notation:

I S is the set of states

I U the set of available actions per agent

I agents i ∈ A ≡ {1, ...,n}

I joint action u ∈ U ≡ Un

I P(s′|s,u) : S ×U× S → [0, 1] is the state transition function

I r(s,u) : S × U→ R is the reward function

I observations z ∈ Z according to observation distribution
O(s) : S ×A → P(Z ).

I γ is discount factor

I action-observation history for an agent i is
τ i ∈ T ≡ (Z × U)∗



MARL problem continued

Qπ(zt ,ut ) = Ezt+1:∞,ut+1:∞

[ ∞∑
k=0

γk rt+k |zt ,ut

]

The goal of the problem is to find the optimal action value
function Q∗ and the corresponding policy π∗.

Figure 1: Example MARL scenario



Settings in Multi Agent Reinforcement Learning

Figure 2: MARL settings w.r.t observability

I MMDP : 〈S,U,P, r ,n, γ〉 Bijective map O : S → Z

I M-ROMDP : 〈S,U,P, r ,Z ,O,n, γ〉, where we require that
the joint observation space is partitioned w.r.t. S ie.
∀s1, s2 ∈ S ∧ z ∈ Z ,P(z|s1) > 0∧ s1 6= s2 =⇒ P(z|s2) = 0.

I M-POMDP : 〈S,U,P, r ,Z ,O,n, γ〉

I Note that for latter two we assume |Z | >> |S|.



Tensors intro

I Tensors are high dimensional analogues of matrices

I Tensor decomposition, in particular, generalize the concept
of low-rank matrix factorization

I Notation ·̂ to represent tensors

I An order n tensor T̂ has n index sets Ij , ∀j ∈ {1..n} and has
elements T (e), ∀e ∈ ×I Ij

Figure 3: Left: Tensor diagram for an order 3 tensor T̂ . Right:
Contraction between T̂ 1,T̂ 2 on common index sets I2, I3.



Tensors intro

I Tensor contraction: For any two tensors T̂ 1 and T̂ 2 with
I∩ = I1 ∩ I2 we define the contraction operation as
T̂ 1�T̂ 2(e1,e2) =

∑
e∈×I∩ Ij T̂ 1(e1,e) · T̂ 2(e2,e),ei ∈

×I i\I∩ Ij .

I A tensor T̂ can be factorized using a (rank–k ) CP
decomposition into a sum of k vector outer products
(denoted by ⊗), as,

T̂ =
k∑

r=1

wr ⊗n ui
r , i ∈ {1..n}, ||ui

r ||2 = 1. (1)



Tensorising the Q-function

I Given a multi-agent problem G, let Q , {Q : S × Un → R}
be the set of real-valued functions on the state-action space

I Focus on the Curried form Q : S → Un → R,Q ∈ Q so that
Q(s) is an order n tensor

I Algorithms in Tesseract operate directly on the curried form
and preserve the structure implicit in the Q tensor.



Tensorised Bellman Equation

I Components of the underlying MARL problem can be seen
as tensors given a state (denoted with ·̂).

I Modes correspond to action spaces of different agents

Figure 4: Tensor Bellman Equation for n agents. There is an edge for
each agent i ∈ A in the corresponding nodes Q̂π, Ûπ, R̂, P̂ with the
index set U i .



Algorithm 1 Model-based Tesseract

1: Initialise rank k , π = (πi)n
1 and Q̂: Theorem 3

2: Initialise model parameters P̂, R̂
3: Learning rate← α,D ← {}
4: for each episodic iteration i do
5: Do episode rollout τi =

{
(st ,ut , rt , st+1)L

0
}

using π
6: D ← D ∪ {τi}
7: Update P̂, R̂ using CP-Decomposition on moments from

D (Theorem 3)
8: for each internal iteration j do
9: Q̂ ← T πQ̂

10: end for
11: Improve π using Q̂
12: end for
13: Return π, Q̂



Theorems for MMDP

Theorem (Bounding rank of Q̂)

For a finite MMDP under mild assumptions, the action-value
tensor satisfies rank(Q̂π(s)) ≤ k1 + k2|S|, ∀s ∈ S,∀π.

Corollary

For all k ≥ k1 + k2|S|, the procedure Qt+1 ← ΠkT πQt converges
to Qπ for all Q0, π.



Theorems for MMDP

I Rank sufficient approximation k ≥ k1, k2

Theorem (Model based estimation of R̂, P̂ error bounds)

Given any ε > 0,1 > δ > 0, for a policy π with the policy tensor
satisfying π(u|s) ≥ ∆, where

∆ = max
s

C1µ
6
sk5(wmax

s )4 log(|U|)4 log(3k ||R(s)||F/ε)
|U|n/2(wmin

s )4

and C1 is a problem dependent positive constant. There exists
N0 which is O(|U|

n
2 ) and polynomial in 1

δ ,
1
ε , k and relevant

spectral properties of the underlying MDP dynamics such that
for samples ≥ N0, we can compute the estimates R̄(s), P̄(s, s′)
such that w.p. ≥ 1− δ,
||R̄(s)− R̂(s)||F ≤ ε, ||P̄(s, s′)− P̂(s, s′)||F ≤ ε,∀s, s′ ∈ S.



Theorems for MMDP

Theorem (Error bound on policy evaluation)

Given a behaviour policy πb satisfying the conditions in the
theorem above and executed for steps ≥ N0, for any policy π the
model based policy evaluation Qπ

P̄,R̄ satisfies:

|Qπ
P,R(s,a)−Qπ

P̄,R̄(s,a)| ≤(|1− f |+ f |S|ε) γ

2(1− γ)2

+
ε

1− γ
, ∀(s,a) ∈ S × Un

where 1
1+ε|S| ≤ f ≤ 1

1−ε|S| .



Comments

I Similar results can be obtained for M-POMDPs and
M-ROMDPs with some conditions on the observation
distribution (no information loss).

I O(kn|U||S|2) parameters for the model based approach, for
large/continuous state-action spaces the tensor structure
can be embedded in a model free manner (next)



Model free Tesseract

Figure 5: Tesseract architecture

I The joint action-value estimate of the tensor Q̂(s) by the
central critic is:

Q̂π(s) ≈
k∑

r=1

w i
r ⊗n gφ,r (si), i ∈ {1..n} (2)



Algorithm 2 Model free Tesseract

Initialise parameter vectors θ, φ, η
Learning rate← α,D ← {}
for each episodic iteration i do

Do episode rollout τi =
{

(st ,ut , rt , st+1)L
0
}

using πθ
D ← D ∪ {τi}
Sample batch B ⊆ D.
Compute empirical estimates for LTD,Jθ
φ← φ− α∇φLTD (Rank k projection step)
η ← η − α∇ηLTD (Action representation update)
θ ← θ + α∇θJθ (Policy update)

end for
Return π, Q̂



StarCraft II: SMAC Experiments

(a) 3s5z Easy (b) 2s vs 1sc Easy

(c) 2c vs 64zg Hard (d) 5m vs 6m Hard

Figure 6: Performance of different algorithms on Easy and Hard
SMAC scenarios: TAC, QMIX, VDN, FQL, IQL.



StarCraft II: SMAC Experiments

(a) MMM2 Super Hard (b) 27m vs 30m Super Hard

(c) 6h vs 8z Super Hard (d) Corridor Super Hard

Figure 7: Performance of different algorithms on Super Hard SMAC
scenarios: TAC, QMIX, VDN, FQL, IQL.
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