
An End-to-End framework for Molecular 
Conformation Generation via Bilevel Programming

Minkai Xu1,2, Wujie Wang3, Shitong Luo4, Chence Shi1,2,
Yoshua Bengio1,2, Rafael Gómez-Bombarell1,3, Jian Tang1,5

Minkai Xu @ ICML 2021



Conformation Prediction
• For real-world molecules, computing 3D structures is expensive
• We study how to predict valid and stable conformations from molecular graph

• Molecular graph 𝒢: 2D atom-bond graph
• Conformation 𝑹: atomic 3D coordinates
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Limitation of previous works & Motivation

• Likelihood of conformations is not rotation and translation invariant1. 

Distance based methods2,3 learn to generate outputs (distances) as the

intermediate variables of the desired object (atomic coordinates)

• This motivates us to pursue an algorithm that (C1) learns to generate 

conformations in an end-to-end fashion, and (C2) preserves the roto-

translation equivariance of conformations.
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Solution

• Learn p 𝑹 𝒢 in an end-to-end manner, thus we can take the error of
distance geometry into account during training!
• We formulate learning p 𝑹 𝒢 as a bilevel program:

• In bilevel program, we have two objectives F and H (outer and inner objective),
and the corresponding outer and inner variables θ and w:

• We can get w though T steps optimization
and so on

• Then the meta-gradient dF/dθ can be computed through the optimization 
path to optimize the meta-parameters θ
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Solution

• We formulate learning p 𝑹 𝒢 as a bilevel program:
• Meta parameters: 𝑝" 𝒅 𝒢 to generate the distances
• Inner loop: solve 𝑹 from 𝒅 :

• Outer loop: maximize the likelihood of p 𝑹 𝒢 (reconstruction in VAE)
• First align the reference conformation R*
• Then compute the RMSD (root-mean-square deviation):
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Whole framework

• Outer objective:
• Encoder q(z|G,R); Prior p(z|G); Decoder p(d|z,G)
• Lrecon: first term (reconstruction loss)
• Lprior: second term (prior regularization loss)
• Laux: auxiliary term (an additional supervision on the distances)
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Experiments

• Data Sets
• GEOM: > 33 million molecular conformers by MIT group, including both small

molecules in QM9 and medium-sized drug-like molecules.

• Baselines
• CVGAE(Mansimov et al. 2019): learning atom representations with GNNs and

then predict the coordinates of atoms
• GraphDG(Simm&Hernandez-Lobato, 2020) and CGCF (Xu et al., 2021):

predicting the pairwise distances between atoms with GNNs and then
generate conformers based on distances

• RDKit: a classical Euclidean Distance Geometry-based approach
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Evaluation Metrics
• Discrepancy between two conformations: Root-Mean-Square Deviation (RMSD)

• Coverage (COV): the fraction of conformations in the reference set that are 

matched by at least one conformation in the generated conformations

• Matching (MAT): measure the average distance of the reference conformations

with their nearest neighbors in the generated conformations
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Under review as a conference paper at ICLR 2021

Table 1: Comparison of different methods on the COV and MAT scores. Top 4 rows: deep generative models
for molecular conformation generation. Bottom 5 rows: different methods that involve an additional rule-based
force field to further optimize the generated structures.

Dataset GEOM-QM9 GEOM-Drugs

Metric COV⇤ (%) MAT (Å) COV⇤ (%) MAT (Å)
Mean Median Mean Median Mean Median Mean Median

CVGAE 8.52 5.62 0.7810 0.7811 0.00 0.00 2.5225 2.4680
GraphDG 55.09 56.47 0.4649 0.4298 7.76 0.00 1.9840 2.0108
CGCF 69.60 70.64 0.3915 0.3986 49.92 41.07 1.2698 1.3064
CGCF + ETM 72.43 74.38 0.3807 0.3955 53.29 47.06 1.2392 1.2480

RDKit 79.94 87.20 0.3238 0.3195 65.43 70.00 1.0962 1.0877

CVGAE + FF 63.10 60.95 0.3939 0.4297 83.08 95.21 0.9829 0.9177
GraphDG + FF 70.67 70.82 0.4168 0.3609 84.68 93.94 0.9129 0.9090
CGCF + FF 73.52 72.75 0.3131 0.3251 92.28 98.15 0.7740 0.7338

CGCF + ETM + FF 73.54 72.58 0.3088 0.3210 92.41 98.57 0.7737 0.7616
* For the reported COV score, the threshold � is set as 0.5Å for QM9 and 1.25Å for Drugs. More

results of COV scores with different threshold � are given in Appendix H.

Figure 2: Visualization of generated conformations from the state-of-the-art baseline (GraphDG), our method
and the ground-truth, based on four random molecular graphs from the test set of GEOM-Drugs. C, O, H, S
and Cl are colored gray, red, white, yellow and green respectively.

conformation in the generated set, its neighbors in the reference set within a given RMSD threshold
� are marked as matched:

COV(Sg(G), Sr(G)) =
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where Sg(G) denotes the generated conformations set for molecular graph G, and Sr(G) demotes the
reference set. In practice, the number of samples in the generated set is two times of the reference
set. Typically, a higher COV score means the a better diversity performance. The COV score is able
to evaluate whether the generated conformations are diverse enough to cover the ground-truth.

While COV is effective to measure the diversity and detect the mode-collapse case, it is still possible
for the model to achieve high COV with a high threshold tolerance. Here we define the MAT score as
a complement to measure the quality of generated samples. For each conformation in the reference
set, the RMSD distance to its nearest neighbor in the generated set is computed and averaged:

MAT(Sg(G), Sr(G)) =
1

|Sr|
X

R02Sr
min
R2Sg

RMSD(R, R0
). (13)

This metric concentrate on the accuracy of generated conformations. More realistic generated sam-
ples lead to a lower matching score.

Results. Tab. 1 shows that compared with the existing state-of-the-art baselines, our CGCF model
can already achieve superior performance on all four metrics (top 4 rows). As a CNF-based model,
CGCF holds much the higher generative capacity for both diversity and quality compared than VAE
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Results
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Refined by classical
Merck Molecular
Force Field (MMFF)

ConfVAE-: ablation
setting by removing the
bilevel component

ConfVAE+FF: the first method that already practically useful (beat the rule-based RDKit
baseline) when combined with MMFF, and achieves the state-of-the-art performance



Visualizations
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Thank you!

14

Code is available at https://github.com/MinkaiXu/ConfVAE-ICML21
Also feel free to contact me later at xuminkai@mila.quebec

https://github.com/MinkaiXu/ConfVAE-ICML21

