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Conformation Prediction

* For real-world molecules, computing 3D structures is expensive

* We study how to predict valid and stable conformations from molecular graph

* Molecular graph G: 2D atom-bond graph
* Conformation R: atomic 3D coordinates
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Limitation of previous works & Motivation

e [Likelihood of conformations is not rotation and translation invariant!.
Distance based methods?? learn to generate outputs (distances) as the

intermediate variables of the desired object (atomic coordinates)

* This motivates us to pursue an algorithm that (C1) learns to generate
conformations 1n an end-to-end fashion, and (C2) preserves the roto-

translation equivariance of conformations.

'Mansimov, Elman, et al. "Molecular geometry prediction using a deep generative graph neural network." Scientific reports 9.1 (2019): 1-13.
2Simm, Gregor NC, and José Miguel Hernandez-Lobato. “A generative model for molecular distance geometry.” arXiv preprint arXiv:1909.11459 (2019).
3Minkai Xu, Shitong Luo, Yoshua Bengio, Jian Peng, and Jian Tang. Learning neural generative dynamics for molecular conformation generation. ICLR 2021



Solution

* Learn p(R|G) in an end-to-end manner, thus we can take the error of
distance geometry into account during training!

* We formulate learning p(R|G) as a bilevel program:

* |In bilevel program, we have two objectives F and H (outer and inner objective),
and the corresponding outer and inner variables 6 and w:

mein F(wg) such that wy € arg min H (w, 0)
w
 We can get w though T steps optimization

We, T = (I)(’LUQ’T_l, 9) = (I)((I)(UJQ,T_Q, 9), 9)0 on
* Then the meta-gradient dF/d0 can be computed through the optimization
path to optimize the meta-parameters 0
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Solution

* We formulate learning p(R|G) as a bilevel program:
* Meta parameters: pg(d|G) to generate the distancedy o = Dy(24,G)
* Inner loop: solve R from d : Ro,4 = argmin H(R, Dy(z4,3))

= arg m}-'icn H(R,dy )
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* Quter loop: maximize the likelihood of p(R|G) (reconstruction in VAE)
* First align the reference conformation R* , )

A 1 A 2
 Then compute the RMSD (root-mean-square deviation): RMSD(R, R) = (ﬁ > IR - Ri||2)
1=1
F(Rg,4) = logpg(R|2,G)
n 3
=—> ) (Ri;j — A(R,R");)°
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Whole framework

* Quter objective:

* Encoder q(z|G,R); Prior p(z| G); Decoder p(d|z,G)
log P(R|G) >E.q,(z|r,6) [log pa(R|2,G)]
— Dk (g4 (2| R, G)||py (2]G)]

* Lrecon: first term (reconstruction loss)

* Lprior: second term (prior regularization loss)
* Laux: auxiliary term (an additional supervision on the distances)
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Experiments

 Data Sets

* GEOM: > 33 million molecular conformers by MIT group, including both small
molecules in QM9 and medium-sized drug-like molecules.

 Baselines

 CVGAE(Mansimov et al. 2019): learning atom representations with GNNs and
then predict the coordinates of atoms

 GraphDG(Simm&Hernandez-Lobato, 2020) and CGCF (Xu et al., 2021):

predicting the pairwise distances between atoms with GNNs and then
generate conformers based on distances

* RDKit: a classical Euclidean Distance Geometry-based approach
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Evaluation Metrics

* Discrepancy between two conformations: Root—l\/lean-Square Deviation (RMSD)
RMSD(R, R) ( Z IR, — R, HQ)

* Coverage (COV): the fraction of conformatlons in the reference set that are

matched by at least one conformation in the generated conformations

COV(S,(G).5,(0)) = —

{R e S,|RMSD(R, R') < 6, R ¢ Sg}

 Matching (MAT): measure the average distance of the reference conformations

with their nearest neighbors in the generated conformations

MAT(S,(G),5,(G)) = —

min RMSD(R, R).

’ T’ R’cS.,. RES
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Results

ConfVAE-: ablation

1.2609 — setting by removing the

Dataset GEOM-QM9 GEOM-Drugs
NMiiric COV* (%) MAT (A) COV* (%) MAT (A)
Mean Median Mean Median | Mean Median Mean  Median
CVGAE 8.52 5.62 0.7810 0.7811 0.00 0.00 2.5225 2.4680
GraphDG 55.09 5647 04649 04298 | 7.76 0.00 1.9840 2.0108
CGCF 69.60 70.64 0.3915 0.3986 | 4992 41.07 1.2698 1.3064
ConfVAE- 75.57 80.76  0.3873 0.3850 | 51.24  46.36 1.2487
ConfVAE 7798 8282 0.3778 0.3770 | 52.59 56.41 1.2330 1.2270
RDKit 79.94  87.20 0.3238 0.3195 | 6543  70.00 1.0962 1.0877
CVGAE + FF 63.10 60.95 0.3939 04297 | 83.08 95.21 0.9829 0.9177
GraphDG + FF | 70.67 70.82 04168 0.3609 | 84.68 9394 09129 0.9090
CGCF + FF 73.52 72775 03131 0.3251 | 92.28 98.15 0.7740  0.7338
ConfVAE- + FF | 77.95 79.14  0.2851 0.2817 | 91.48  99.21 0.7743  0.7436
ConfVAE +FF | 8146 83.80 0.2702 0.2709 | 91.88 100.00 0.7634 0.7312

" For COV, the threshold ¢ is set as 0.5A for QM9 and 1.25A for Drugs following Xu et al. (2021).

bilevel component

Refined by classical
— Merck Molecular
Force Field (MMFF)

—

ContVAE+FF: the first method that already practically useful (beat the rule-based RDKit
baseline) when combined with MMFF, and achieves the state-of-the-art performance
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Visualizations
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Thank you!

Code 1s available at https://github.com/MinkaiXu/ConfVAE-ICML21

Also feel free to contact me later at xuminkai(@mila.quebec
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