Whitening and Second Order Optimization Both Make Information in the Dataset Unusable During Training, and Can Reduce or Prevent Generalization

Neha S. Wadia,¹ Daniel Duckworth,² Samuel S. Schoenholz,² Ethan Dyer,² Jascha Sohl-Dickstein²

¹University of California, Berkeley (Work done as an intern at Google Brain.)

²Google Brain

ICML 2021

Result 1. For models with a dense, isotropically initialized first layer, the only information SGD can use to generalize is contained in the sample second moment matrix (Gram matrix).

Result 1. For models with a dense, isotropically initialized first layer, the only information SGD can use to generalize is contained in the sample second moment matrix (Gram matrix).

Result 2. Whitening removes information in this matrix in a dimensionality-dependent manner.

Result 1. For models with a dense, isotropically initialized first layer, the only information SGD can use to generalize is contained in the sample second moment matrix (Gram matrix).

Result 2. Whitening removes information in this matrix in a dimensionality-dependent manner.

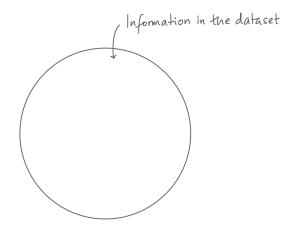
 \Rightarrow Whitening negatively impacts generalization in a dimensionality-dependent manner.

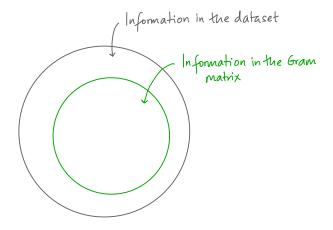
Result 1. For models with a dense, isotropically initialized first layer, the only information SGD can use to generalize is contained in the sample second moment matrix (Gram matrix).

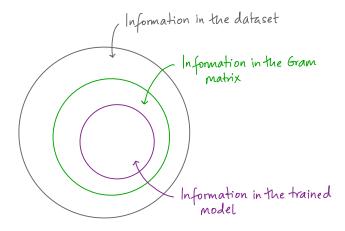
Result 2. Whitening removes information in this matrix in a dimensionality-dependent manner.

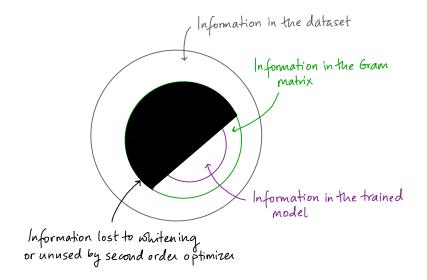
 \Rightarrow Whitening negatively impacts generalization in a dimensionality-dependent manner.

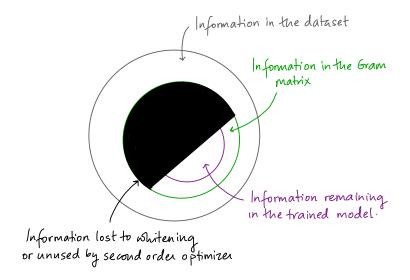
Result 3. \exists an equivalence between Newton's method on unwhitened data and SGD on whitened data in linear models and overparametrized networks.

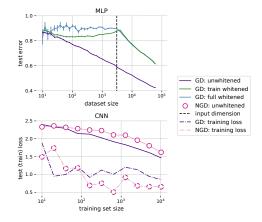

Result 1. For models with a dense, isotropically initialized first layer, the only information SGD can use to generalize is contained in the sample second moment matrix (Gram matrix).

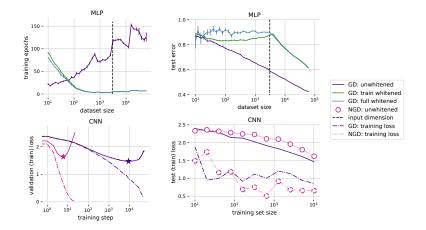

Result 2. Whitening removes information in this matrix in a dimensionality-dependent manner.


 \Rightarrow Whitening negatively impacts generalization in a dimensionality-dependent manner.

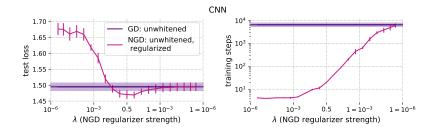

Result 3. \exists an equivalence between Newton's method on unwhitened data and SGD on whitened data in linear models and overparametrized networks.


 \Rightarrow Generalization in these models is similarly harmed.





Whitening always throws away information; pure second order optimizers fail to use that information.


Whitening and pure second order optimization harm generalization

Whitening and pure second order optimization harm generalization, but both speed up training

Regularized second order optimization can sometimes train faster *and* generalize better

NGD preconditioner: $((1 - \lambda)B + \lambda I)^{-1}$, $\lambda \in [0, 1]$, B: Hessian.

Summary

- Whitening and pure second order optimization both cause a reduction in generalization through an information loss mechanism, ...
- ▶ ... but require fewer iterations to train.
- Regularized second order optimizers can in some cases both train faster and generalize better than SGD.

Thank you!

Please come to our poster and check out our paper!