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Theoretical Results

Result 1. For models with a dense, isotropically initialized first
layer, the only information SGD can use to generalize is contained
in the sample second moment matrix (Gram matrix).

Result 2. Whitening removes information in this matrix in a
dimensionality-dependent manner.

⇒ Whitening negatively impacts generalization in a
dimensionality-dependent manner.

Result 3. ∃ an equivalence between Newton’s method on
unwhitened data and SGD on whitened data in linear models and
overparametrized networks.

⇒ Generalization in these models is similarly harmed.
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Main message

Whitening always throws away information; pure second order
optimizers fail to use that information.



Whitening and pure second order optimization harm
generalization, but both speed up training
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Regularized second order optimization can sometimes train
faster and generalize better
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NGD preconditioner: ((1− λ)B + λI )−1 , λ ∈ [0, 1], B: Hessian.



Summary

I Whitening and pure second order optimization both cause a
reduction in generalization through an information loss
mechanism, ...

I ... but require fewer iterations to train.

I Regularized second order optimizers can in some cases both
train faster and generalize better than SGD.

Thank you!
Please come to our poster and check out our paper!


