Improved Corruption Robust Algorithms for Episodic
Reinforcement Learning

Yifang Chen, Simon Shaolei Du, Kevin Jamieson
University of Washington

Corrupted Episodic RL Protocol

» Unknown underlying model: M = (S, A,P,R, H,s1)
> Atepisodet=1,2,..., T,

» The learner choose an non-stationary policy m = {77,,},’;’:1 where
foreach he [H], mp: S — A

> Based on M, the policy 7w induces a random trajectory
S1,a1,,52,32, 12, ...,SH,aH, 'H, SH+1 Where
an = mh(sh), th ~ R(sh, an), sh+1 ~ P(:|sh, an).

Corrupted Episodic RL Protocol

» Unknown underlying model: M = (S, A,P,R, H,s1)
> Atepisodet=1,2,..., T,

» The learner choose an non-stationary policy m = {wh},’;lzl where
foreach he [H], mp: S — A

> Based on M, the policy 7w induces a random trajectory
S1,a1,,52,32, 12, ...,SH,aH, 'H, SH+1 Where
an = mh(sh), th ~ R(sh, an), sh+1 ~ P(:|sh, an).

> Regret: 327 (maxﬂ B[S | M7 — B[S ry | M,m]>

> Goal: Reg < O <min{ﬁ, SomeGapCompIexity}pon(]S\].A]H))

Corrupted Episodic RL Protocol

» Unknown underlying model: M = (S, A,P,R, H,s1)
> Atepisodet=1,2,..., T,

» The adversary choose an unknown corrupted model
M; = (S, A, P:,R:, H, s1) based on the previous history.

» The learner choose an non-stationary policy m = {77,,},’;’:1 where
foreach he [H], mp: S — A

> Based on M, the policy 7w induces a random trajectory
S1,a1,,52,32, 12, ...,SH,aH, 'H, SH+1 Where
an = mh(sh), th ~ R(sh, an), sh+1 ~ P(:|sh, an).

> Regret: 327 (maxﬂ B[S | M7 — B[S ry | M,m]>

> Goal: Reg < O <min{ﬁ, SomeGapCompIexity}pon(]S\].A]H))

Corrupted Episodic RL Protocol

» Unknown underlying model: M = (S, A,P,R, H,s1)
> Atepisode t =1,2,..., T,

» The adversary choose an unknown corrupted model
M; = (S, A, P:,R:, H, s1) based on the previous history.

P> The learner choose an non-stationary policy m = {77;,}2’21 where
foreach he [H], mp: S — A

> Based on M;, the policy m induces a random trajectory
S1,a1,h,%,a2,r,...,SH,adH, r'H, SH+1 where
ap = mh(sn), rn ~ Ri(sh, an, h), spp1 ~ Pe(-|sh. an, h).

> Regret: ZtT:1 (maxﬂ B[| M7 — B[| M,m])

> Goal: Reg < O (min{ﬁ, SomeGapCompIexity}poly(]S||A|H))

Corrupted Episodic RL Protocol

» Unknown underlying model: M = (S, A,P,R, H,s1)
> Atepisode t =1,2,..., T,

» The adversary choose an unknown corrupted model
M; = (S, A, P:,R:, H, s1) based on the previous history.

P> The learner choose an non-stationary policy m = {77;,}2’21 where
foreach he [H], mp: S — A

> Based on M;, the policy m induces a random trajectory
S1,a1,h,%,a2,r,...,SH,adH, r'H, SH+1 where
ap = mh(sn), rn ~ Ri(sh, an, h), spp1 ~ Pe(-|sh. an, h).

> Regret: ZtT:1 (maxﬂ B[| M7 — B[| M,m])

> Goal: Reg < O (min{ﬁ, SomeGapCompIexity}poly(]S||A|H))
+ Corruption Term

Formal definitions of corruption

» Corruption on rewards at episode t:

H T

=) s |Risah-Rsa)l ' =>d
h—1 (5,2)€SxA t=1

» Corruption on transition functions episode t:

H

T
=Y sup |Pe(ls,ah)—P(ls,a)ll, CP=D
h—=1 (s,a)eSxA t—1

Formal definitions of corruption

» Corruption on rewards at episode t:

H T

=) s |Risah-Rsa)l ' =>d
h—1 (5,2)€SxA t=1

» Corruption on transition functions episode t:

H

T
=Y sup |Pe(ls,ah)—P(ls,a)ll, CP=D
h—=1 (s,a)eSxA t—1

» The corruptions on transition functions make this problem harder
than corrupted multi-arm bandits problem, which is a special case of
tabular RL.

Our results

» Existing Results:

> C~orruptions only present on rewards:
O(min{v/T, GapComplexity 4+ /C" - GapComplexity})
[JL20][JHL21]

> C~orruption term appear multiplicatively in the regret bound:
O(C min{V/T, GapComplexity} + C?), where C is the number
of corrupted episodes [LSS20]

Our results

» Existing Results:

> C~orruptions only present on rewards:
O(min{v/T, GapComplexity 4+ /C" - GapComplexity})
[JL20][JHL21]

> C~orruption term appear multiplicatively in the regret bound:
O(C min{V/T, GapComplexity} + C?), where C is the number
of corrupted episodes [LSS20]

» Our results:

> O(min{V/T, PolicyGapComplexity} + (1 + CP)(CP + C"))

Our results

» Existing Results:

> C~orruptions only present on rewards:
O(min{v/T, GapComplexity 4+ /C" - GapComplexity})
[JL20][JHL21]

> C~orruption term appear multiplicatively in the regret bound:
O(C min{V/T, GapComplexity} + C?), where C is the number
of corrupted episodes [LSS20]

» Our results:
> O(min{V/T, PolicyGapComplexity} + (1 + CP)(CP + C"))

» Corruptions appear on both rewards and transition functions

Our results

» Existing Results:

> C~orruptions only present on rewards:
O(min{v/T, GapComplexity 4+ /C" - GapComplexity})
[JL20][JHL21]

> C~orruption term appear multiplicatively in the regret bound:
O(C min{V/T, GapComplexity} + C?), where C is the number
of corrupted episodes [LSS20]

» QOur results:
> O(min{V/T, PolicyGapComplexity} + (1 + CP)(CP + C"))
» Corruptions appear on both rewards and transition functions

» Corruption term appears additively in the regret bound

Our results

» Existing Results:

> C~orruptions only present on rewards:
O(min{v/T, GapComplexity 4+ /C" - GapComplexity})
[JL20][JHL21]

> C~orruption term appear multiplicatively in the regret bound:
O(C min{V/T, GapComplexity} + C?), where C is the number
of corrupted episodes [LSS20]

» QOur results:
> O(min{V/T, PolicyGapComplexity} + (1 + CP)(CP + C"))
» Corruptions appear on both rewards and transition functions
» Corruption term appears additively in the regret bound

» Corruption term appears in a finer definition, showing a
separation between the corruptions on rewards and transitions

MAB (|S| = 1): a warm-up [GKT19]

» Divide the time horizon into log(T) epochs in a doubling manner

MAB (|S| = 1): a warm-up [GKT19]

» Divide the time horizon into log(T) epochs in a doubling manner
» Inside each block Z,,

@A /(A2
JeA 1/(&:’,)2 ~ ‘Iml

» Pull each arm a with probability >

> Estimate all A;" given previous history to ensure that

AT — O(A,)| S AT + average corruptions in epoch m
< V' 1/|Zm| + average corruptions until now

MAB (|S| = 1): a warm-up [GKT19]

» Divide the time horizon into log(T) epochs in a doubling manner

» Inside each block Z,,

» Pull each arm a with probability > 1/(?/()2 2 R 1/‘(15‘%)2
aeA m

> Estimate all A;" given previous history to ensure that
AT — O(A,)| S AT + average corruptions in epoch m
< V' 1/|Zm| + average corruptions until now

> Get regret in Z,, as » . 4 Dy % (Am)2

MAB to RL: a naive extension

» Divide the time horizon into log(T) epochs in a doubling manner
» Inside each block Z,,

V(A" Y(Ary

» Rollout each policy 7 with probability s GRS T
w'en ! m

» Estimate all A;}” given previous history to ensure that

AT — O(A,)| S A™ + average corruptions in epoch m

< V' 1/|Zm| + average corruptions until now

i 1
> Get regretinZ, as) Ay * oy

MAB to RL: a naive extension

» Divide the time horizon into log(T) epochs in a doubling manner
» Inside each block Z,,

V(A" Y(Ary

» Rollout each policy 7 with probability s GRS T
w'en ! m

» Estimate all A;f given previous history to ensure that

AT — O(A,)| S A™ + average corruptions in epoch m

< V' 1/|Zm| + average corruptions until now

i 1
> Get regretinZ, as) Ay * oy

» Final regret will depend on || = |A|ISI? |

MAB to RL: a further extension

» Divide the time horizon into log(T) epochs in a doubling manner
» Inside each block Z,,

P Rollout each policy 7 inside certain representative subset I1;
1/(A=m)? ~ Y(Ar)y?
/(A m2 = Il

with probability >

el

» Estimate all A;f given previous history to ensure that
AT — O(A,)| S A™ + average corruptions in epoch m
< V' 1/|Zm| + average corruptions until now

: 1 1
> Get regret in Ipm as 71 D yez,, D onen, Br * Ep

MAB to RL: a further extension

» Divide the time horizon into log(T) epochs in a doubling manner
» Inside each block Z,,

P Rollout each policy 7 inside certain representative subset I1;

with probability > /16/[1(15/”(2)2/”1)2 ~ 1/%:"]’)2

» Estimate all A;f given previous history to ensure that

AT — O(A,)| S A™ + average corruptions in epoch m

< V' 1/|Zm| + average corruptions until now

i 1
» Get regret in Zp, as H%l > otez, 2amen, Br * Ep

» Final regret will depend on max; |[¢| = poly(|S||A|H)!

MAB to RL: another Problem

» Rollout each policy 7 inside certain representative subset 1, with
1(@Ar? 1/(Ap)?
wen/(Am)2 7 Tl

robabilit
p y >
> Estimate all A;f given previous history to ensure that

IAM+ _ O(AL)| S A™ + average corruptions in epoch m
< V' 1/|Zm| + average corruptions until now

But how to find such representative sets which result accurate estimation?

MAB to RL: another Problem

» Rollout each policy 7 inside certain representative subset 1, with
1/(A7)? ~ Y(Ar?
7/en 1/(A7T/)2 ‘Im‘

robabilit
p y >
> Estimate all A;f given previous history to ensure that

A" 4 average corruptions in epoch m

/' 1/|Zm| + average corruptions until now

AT —O0(A)| 5
S
But how to find such representative sets which result accurate estimation?

P In unknown but non-corrupted transition setting, we can adopt some
existing reward-free exploration algorithms

MAB to RL: another Problem

» Rollout each policy 7 inside certain representative subset 1, with
1/(A7)? ~ Y(Ar?
7’en 1/(A:/)2 ‘Im‘

robabilit
p y >
> Estimate all A;f given previous history to ensure that

A" 4 average corruptions in epoch m

/' 1/|Zm| + average corruptions until now

APt —0(Aq)] £
=

But how to find such representative sets which result accurate estimation?

P In unknown but non-corrupted transition setting, we can adopt some
existing reward-free exploration algorithms

» When transition functions are also corrupted, the problem becomes
even harder.

Our solution

» We propose a corruption robust reward-free exploration algorithm
ESsTALL that will

P either return an accurate estimation on all the policies

» or return Fail only when the corruptions on transition beyond
certain threshold.

Our solution

» We propose a corruption robust reward-free exploration algorithm
ESsTALL that will

P either return an accurate estimation on all the policies

» or return Fail only when the corruptions on transition beyond
certain threshold.

> ESTALL only rollouts policies at most
O (log(|M])) = O (poly (| A[|S|H)) time

Our solution

» We propose a corruption robust reward-free exploration algorithm
ESsTALL that will

P either return an accurate estimation on all the policies

» or return Fail only when the corruptions on transition beyond
certain threshold.

> ESTALL only rollouts policies at most
O (log(|M])) = O (poly (| A[|S|H)) time

> We propose a meta-algorithm for RL inspired by MAB setting, and
use ESTALL as a sub-routine.

Thanks!

