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Corrupted Episodic RL Protocol

I Unknown underlying model: M = (S,A,P,R,H, s1)

I At episode t = 1, 2, . . . ,T ,

I The adversary choose an unknown corrupted model
Mt = (S,A,Pt ,Rt ,H, s1) based on the previous history.

I The learner choose an non-stationary policy π = {πh}Hh=1 where
for each h ∈ [H], πh : S → A

I Based on M, the policy π induces a random trajectory
s1, a1, r1, s2, a2, r2, . . . , sH , aH , rH , sH+1 where
ah = πh(sh), rh ∼ R(sh, ah), sh+1 ∼ P(·|sh, ah).

I Regret:
∑T

t=1

(
maxπ E[

∑H
h=1 rh | M, π]− E[

∑H
h=1 rh | M, πt ]

)
I Goal: Reg ≤ Õ

(
min{

√
T ,SomeGapComplexity}poly(|S||A|H)

)
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(
min{

√
T , SomeGapComplexity}poly(|S||A|H)

)
+ Corruption Term



Formal definitions of corruption

I Corruption on rewards at episode t:

c rt =
H∑

h=1

sup
(s,a)∈S×A

|Rt(s, a, h)− R(s, a)|, C r =
T∑
t=1

c rt

I Corruption on transition functions episode t:

cpt =
H∑

h=1

sup
(s,a)∈S×A

‖Pt(·|s, a, h)− P∗(·|s, a)‖1, Cp =
T∑
t=1

cpt

I The corruptions on transition functions make this problem harder
than corrupted multi-arm bandits problem, which is a special case of
tabular RL.
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Our results

I Existing Results:

I Corruptions only present on rewards:
Õ(min{

√
T ,GapComplexity +

√
C r · GapComplexity})

[JL20][JHL21]

I Corruption term appear multiplicatively in the regret bound:
Õ(C min{

√
T ,GapComplexity}+ C 2), where C is the number

of corrupted episodes [LSS20]

I Our results:

I Õ
(

min{
√
T ,PolicyGapComplexity}+ (1 + Cp)(Cp + C r )

)
I Corruptions appear on both rewards and transition functions

I Corruption term appears additively in the regret bound

I Corruption term appears in a finer definition, showing a
separation between the corruptions on rewards and transitions
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MAB (|S| = 1): a warm-up [GKT19]

I Divide the time horizon into log(T ) epochs in a doubling manner

I Inside each block Im

I Pull each arm a with probability 1/(∆̂m
a )2∑

a′∈A 1/(∆̂m
a′ )

2
≈ 1/(∆̂m

a )2

|Im|

I Estimate all ∆̂m
a given previous history to ensure that

|∆̂m+1
a −O(∆a)| / ∆̂m

a + average corruptions in epoch m

/
√

1/|Im|+ average corruptions until now

I Get regret in Im as
∑

a∈A∆a ∗ 1
(∆̂m

a )2
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MAB to RL: a naive extension

I Divide the time horizon into log(T ) epochs in a doubling manner

I Inside each block Im

I Rollout each policy π with probability 1/(∆̂π
m)2∑

π′∈Π 1/(∆̂π′m)2
≈ 1/(∆̂m

π )2

|Im|

I Estimate all ∆̂m
π given previous history to ensure that

|∆̂m+1
π −O(∆π)| / ∆̂m

π + average corruptions in epoch m

/
√

1/|Im|+ average corruptions until now

I Get regret in Im as
∑

π∈Π ∆π ∗ 1
(∆̂π

m)2

I Final regret will depend on |Π| = |A||S|H !
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MAB to RL: a further extension

I Divide the time horizon into log(T ) epochs in a doubling manner

I Inside each block Im

I Rollout each policy π inside certain representative subset Πt

with probability 1/(∆̂π
m)2∑

π′∈Π 1/(∆̂π′m)2
≈ 1/(∆̂m

π )2

|Im|

I Estimate all ∆̂m
π given previous history to ensure that

|∆̂m+1
π −O(∆π)| / ∆̂m

π + average corruptions in epoch m

/
√

1/|Im|+ average corruptions until now

I Get regret in Im as 1
|Im|

∑
t∈Im

∑
π∈Πt

∆π ∗ 1
(∆̂π

m)2

I Final regret will depend on maxt |Πt | = poly(|S||A|H)!
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MAB to RL: another Problem

I Rollout each policy π inside certain representative subset Πt with

probability 1/(∆̂m
π )2∑

π′∈Π 1/(∆̂m
π′ )

2
≈ 1/(∆̂m

π )2

|Im|

I Estimate all ∆̂m
π given previous history to ensure that

|∆̂m+1
π −O(∆π)| / ∆̂m

π + average corruptions in epoch m

/
√

1/|Im|+ average corruptions until now

But how to find such representative sets which result accurate estimation?

I In unknown but non-corrupted transition setting, we can adopt some
existing reward-free exploration algorithms

I When transition functions are also corrupted, the problem becomes
even harder.
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Our solution

I We propose a corruption robust reward-free exploration algorithm
EstAll that will

I either return an accurate estimation on all the policies

I or return Fail only when the corruptions on transition beyond
certain threshold.

I EstAll only rollouts policies at most
O (log(|Π|)) = O (poly(|A||S|H)) time

I We propose a meta-algorithm for RL inspired by MAB setting, and
use EstAll as a sub-routine.
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Thanks!


