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» Unknown underlying model: M = (S, A,P,R, H,s1)
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» The learner choose an non-stationary policy m = {77,,},’;’:1 where
foreach he [H], mp: S — A

> Based on M, the policy 7w induces a random trajectory
S1,a1,,52,32, 12, ...,SH,aH, 'H, SH+1 Where
an = mh(sh), th ~ R(sh, an), sh+1 ~ P(:|sh, an).
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Corrupted Episodic RL Protocol

» Unknown underlying model: M = (S, A,P,R, H,s1)
> Atepisode t =1,2,..., T,

» The adversary choose an unknown corrupted model
M; = (S, A, P:,R:, H, s1) based on the previous history.

P> The learner choose an non-stationary policy m = {77;,}2’21 where
foreach he [H], mp: S — A

> Based on M;, the policy m induces a random trajectory
S1,a1,h,%,a2,r,...,SH,adH, r'H, SH+1 where
ap = mh(sn), rn ~ Ri(sh, an, h), spp1 ~ Pe(-|sh. an, h).

> Regret: ZtT:1 (maxﬂ B[ | M7 — B[ | M,m])

> Goal: Reg < O (min{ﬁ, SomeGapCompIexity}poly(]S||A|H))
+ Corruption Term
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» The corruptions on transition functions make this problem harder
than corrupted multi-arm bandits problem, which is a special case of
tabular RL.
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Our results

» Existing Results:

> C~orruptions only present on rewards:
O(min{v/T, GapComplexity 4+ /C" - GapComplexity})
[JL20][JHL21]

> C~orruption term appear multiplicatively in the regret bound:
O(C min{V/T, GapComplexity} + C?), where C is the number
of corrupted episodes [LSS20]

» QOur results:
> O(min{V/T, PolicyGapComplexity} + (1 + CP)(CP + C"))
» Corruptions appear on both rewards and transition functions
» Corruption term appears additively in the regret bound

» Corruption term appears in a finer definition, showing a
separation between the corruptions on rewards and transitions
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But how to find such representative sets which result accurate estimation?

P In unknown but non-corrupted transition setting, we can adopt some
existing reward-free exploration algorithms

» When transition functions are also corrupted, the problem becomes
even harder.
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Our solution

» We propose a corruption robust reward-free exploration algorithm
ESsTALL that will

P either return an accurate estimation on all the policies

» or return Fail only when the corruptions on transition beyond
certain threshold.

> ESTALL only rollouts policies at most
O (log(|M])) = O (poly (| A[|S|H)) time

> We propose a meta-algorithm for RL inspired by MAB setting, and
use ESTALL as a sub-routine.
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