## Matrix Completion with Model-free Weighting

Jiayi Wang (Texas A\&M University), Raymond K. W. Wong (Texas A\&M University), Xiaojun Mao (Fudan University) and Kwun Chuen Gary Chan (University of Washington)

ICML 2021

## Background

- Matrix completion

■ to complete a high-dimensional matrix (often low-rank) from its partial and possibly noisy observation

■ Existing work under non-uniform missingness is relatively sparse

1. No adjustment: a form of robustness result for uniform empirical risk minimization with regularization
2. Active adjustment: via a model of missingness (e.g., rank-1)
$\rightsquigarrow$ how to choose/estimate the model?
■ Our work - active adjustment via balancing weights
■ actively adjusts for the non-uniform missingness, without explicitly modeling the probabilities of observation

## Setup

■ Target matrix $\boldsymbol{A}_{\star}=\left(\boldsymbol{A}_{\star, i j}\right)_{i, j=1}^{n_{1}, n_{2}}$
■ Contaminated target matrix $\boldsymbol{Y}=\left(Y_{i j}\right)_{i, j=1}^{n_{1}, n_{2}}$

$$
Y_{i j}=A_{\star, i j}+\epsilon_{i j}, \quad i=1, \ldots, n_{1} ; j=1, \ldots, n_{2}
$$

where $\left\{\epsilon_{i j}\right\}$ are independent errors with zero mean.

- Observation indicator matrix $\boldsymbol{T}=\left(T_{i j}\right)_{i, j=1}^{n_{1}, n_{2}} \in \mathbb{R}^{n_{1} \times n_{2}}$

$$
T_{i j}= \begin{cases}1, & \text { if } Y_{i j} \text { is observed } \\ 0, & \text { otherwise }\end{cases}
$$

where $\left\{T_{i j}\right\}$ are independent Bernoulli random variables with $\pi_{i j}=\operatorname{Pr}\left(T_{i j}=1\right)$.

## Motivation

■ A common strategy: weighted empirical risk

$$
\widehat{R}_{\boldsymbol{W}}(\boldsymbol{A})=\frac{1}{n_{1} n_{2}}\left\|\boldsymbol{T} \circ \boldsymbol{W}^{\circ(1 / 2)} \circ(\boldsymbol{Y}-\boldsymbol{A})\right\|_{F}^{2}
$$

$\square$ A natural choice of $\boldsymbol{W}$ : inverse probability ( $W_{i j}=1 / \pi_{i j}$ )
$\rightsquigarrow$ unknown in practice; high-dimensional in nature; unstable estimations due to extreme weights

## Motivation

■ A novel balancing idea:

$$
\begin{aligned}
& \frac{1}{n_{1} n_{2}}\left\|\boldsymbol{T} \circ \boldsymbol{W}^{(1 / 2)} \circ\left(\boldsymbol{A}_{\star}-\boldsymbol{A}\right)\right\|_{F}^{2} \approx \frac{1}{n_{1} n_{2}}\left\|\boldsymbol{A}_{\star}-\boldsymbol{A}\right\|_{F}^{2}, \\
& 0 \approx \frac{1}{n_{1} n_{2}}|\langle(\boldsymbol{T} \circ \boldsymbol{W}-\boldsymbol{J}) \circ \boldsymbol{\Delta}, \boldsymbol{\Delta}\rangle|, \quad \Delta=\boldsymbol{A}_{\star}-\boldsymbol{A},
\end{aligned}
$$

where $\boldsymbol{J}$ is a matrix of ones

## Motivation

■ Find weights $\boldsymbol{W}$ that minimize the uniform balancing error

$$
\sup _{\Delta \in \mathcal{D}_{n_{1}, n_{2}}} S(\boldsymbol{W}, \boldsymbol{\Delta}):=\sup _{\Delta \in \mathcal{D}_{n_{1}, n_{2}}} \frac{1}{n_{1} n_{2}}|\langle(\boldsymbol{T} \circ \boldsymbol{W}-\boldsymbol{J}) \circ \boldsymbol{\Delta}, \boldsymbol{\Delta}\rangle|,
$$

for a (standardized) set $\mathcal{D}_{n_{1}, n_{2}}$, induced by the hypothesis class $\mathcal{A}_{n_{1}, n_{2}}$ of $\boldsymbol{A}_{\star}$.
■ Additional consideration to the choice of $\mathcal{A}_{n_{1}, n_{2}}$ : computation of the uniform balancing error

## Relaxation

## Lemma 1

For any matrices $\boldsymbol{B}, \boldsymbol{C} \in \mathbb{R}^{n_{1} \times n_{2}}$, we have

$$
|\langle\boldsymbol{C} \circ \boldsymbol{B}, \boldsymbol{B}\rangle| \leq\|\boldsymbol{C}\|\|\boldsymbol{B}\|_{\max }\|\boldsymbol{B}\|_{*} \leq \sqrt{n_{1} n_{2}}\|\boldsymbol{C}\|\|\boldsymbol{B}\|_{\max }^{2} .
$$

■ We have

$$
S(\boldsymbol{W}, \boldsymbol{\Delta}) \leq \sqrt{n_{1} n_{2}}\|\boldsymbol{T} \circ \boldsymbol{W}-\boldsymbol{J}\|\|\boldsymbol{\Delta}\|_{\max }^{2}
$$

■ Choose $\mathcal{A}_{n_{1}, n_{2}}=\left\{\boldsymbol{A}:\|\boldsymbol{A}\|_{\max } \leq \beta\right\}$ and then $\mathcal{D}_{n_{1}, n_{2}}=\left\{\boldsymbol{\Delta}:\|\boldsymbol{\Delta}\|_{\max } \leq 2 \beta\right\}$

## Novel weights

■ The proposed weights:

$$
\begin{array}{ll} 
& \widehat{\boldsymbol{W}}=\underset{\boldsymbol{W}}{\arg \min }\|\boldsymbol{T} \circ \boldsymbol{W}-\boldsymbol{J}\| \\
\text { subject to } & \|\boldsymbol{T} \circ \boldsymbol{W}\|_{F} \leq \kappa \quad \text { and } \quad W_{i j} \geq 1
\end{array}
$$

where $\kappa \geq \sum_{i, j} T_{i j}$ is a tuning parameter
■ Optimization: convex; analytic form of the subgradient is obtainable for the dual Lagrangian form

■ Theoretical guarantee of balancing: a non-asymptotic upper bound for the uniform balancing error $\sup _{\|\Delta\|_{\max } \leq \beta^{\prime}} S(\widehat{\boldsymbol{W}}, \Delta)$ (see Theorem 1)

## Estimation of $\boldsymbol{A}_{\star}$

■ A hybrid constraint/regularization:

1. Max-norm constraint: from the construction of $\mathcal{A}_{n_{1}, n_{2}}$
2. Nuclear-norm regularization: sometimes produces tighter relaxation; shows benefits in exact low-rank cases

■ Hybrid weighted estimator:

$$
\widehat{\boldsymbol{A}}=\underset{\|\boldsymbol{A}\|_{\max } \leq \beta}{\arg \min }\left\{\widehat{R}_{\widehat{\boldsymbol{W}}}(\boldsymbol{A})+\mu\|\boldsymbol{A}\|_{*}\right\}
$$

where $\|\cdot\|_{*}$ denotes the nuclear norm, and $\beta>0, \mu \geq 0$ are tunning parameters
■ Optimization:

1. Convex (original formulation): ADMM algorithm
2. Nonconvex (via a nonconvex formulation): projected gradient descent algorithm

## Theoretical guarantees

■ Theoretical guarantee of recovery: a non-asymptotic upper bound for $\left(n_{1} n_{2}\right)^{-1}\left\|\widehat{\boldsymbol{A}}-\boldsymbol{A}_{\star}\right\|_{F}^{2}$ (see Theorem 2)

■ Two asymptotic regimes:
■ asymptotically homogeneous: $\pi_{L} \asymp \pi_{U}$ (common asymptotic framework)

- asymptotically heterogeneous: $\pi_{L}=\mathcal{O}\left(\pi_{U}\right)$ (a good model for highly varying probabilities; empirical evidence from Mao et al. (2020))
where $\pi_{L}=\min \pi_{i j}, \pi_{U}=\max \pi_{i j}$
■ See Section 5 for the comparison with existing work under asymptotically homogeneous settings

■ For asymptotically heterogeneous settings, our bound scales with $\pi_{L}^{-1 / 2}$, which is significantly better than the existing upper bounds $\left(\pi_{L}^{-1} \pi_{U}^{1 / 2}\right)$

■ A new minimax lower bound: the scaling $\pi_{L}^{-1 / 2}$ cannot be improved (see Theorem 3)

## Acknowledgements

■ US National Science Foundation ${ }^{1}$
■ National Natural Science Foundation of China

- Shanghai Sailing Program

■ Science and Technology Commission of Shanghai Municipality
■ High performance research computing resources provided by Texas A\&M University

[^0]
[^0]:    ${ }^{1}$ Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

