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Matrix Completion with Model-free Weighting

Background

Matrix completion
to complete a high-dimensional matrix (often low-rank) from its partial and possibly noisy
observation

Existing work under non-uniform missingness is relatively sparse
1. No adjustment: a form of robustness result for uniform empirical risk minimization with

regularization
2. Active adjustment: via a model of missingness (e.g., rank-1)
 how to choose/estimate the model?

Our work — active adjustment via balancing weights
actively adjusts for the non-uniform missingness, without explicitly modeling the
probabilities of observation
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Setup

Target matrix A? = (A?,ij)
n1,n2
i,j=1

Contaminated target matrix Y = (Yij)
n1,n2
i,j=1

Yij = A?,ij + εij , i = 1, . . . ,n1; j = 1, . . . ,n2,

where {εij} are independent errors with zero mean.

Observation indicator matrix T = (Tij)
n1,n2
i,j=1 ∈ Rn1×n2

Tij =

{
1, if Yij is observed
0, otherwise

where {Tij} are independent Bernoulli random variables with πij = Pr(Tij = 1).
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Motivation

A common strategy: weighted empirical risk

R̂W (A) =
1

n1n2
‖T ◦W ◦(1/2) ◦ (Y −A)‖2

F

A natural choice of W : inverse probability (Wij = 1/πij )
 unknown in practice; high-dimensional in nature; unstable estimations due to
extreme weights
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Motivation

A novel balancing idea:

1
n1n2

‖T ◦W ◦(1/2) ◦ (A? −A)‖2
F ≈

1
n1n2

‖A? −A‖2
F ,

0 ≈ 1
n1n2

|〈(T ◦W − J) ◦ ∆,∆〉| , ∆ = A? −A,

where J is a matrix of ones
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Motivation

Find weights W that minimize the uniform balancing error

sup
∆∈Dn1,n2

S(W ,∆) := sup
∆∈Dn1,n2

1
n1n2

|〈(T ◦W − J) ◦ ∆,∆〉| ,

for a (standardized) set Dn1,n2 , induced by the hypothesis class An1,n2 of A?.

Additional consideration to the choice of An1,n2 : computation of the uniform
balancing error
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Relaxation

Lemma 1
For any matrices B,C ∈ Rn1×n2 , we have

|〈C ◦B,B〉| ≤ ‖C‖‖B‖max‖B‖∗ ≤
√

n1n2‖C‖‖B‖2
max.

We have
S(W ,∆) ≤

√
n1n2‖T ◦W − J‖‖∆‖2

max

Choose An1,n2 = {A : ‖A‖max ≤ β} and then Dn1,n2 = {∆ : ‖∆‖max ≤ 2β}
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Novel weights

The proposed weights:

Ŵ = arg min
W

‖T ◦W − J‖

subject to ‖T ◦W‖F ≤ κ and Wij ≥ 1,

where κ ≥ ∑i,j Tij is a tuning parameter

Optimization: convex; analytic form of the subgradient is obtainable for the dual
Lagrangian form

Theoretical guarantee of balancing: a non-asymptotic upper bound for the uniform
balancing error sup‖∆‖max≤β′ S(Ŵ ,∆) (see Theorem 1)
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Estimation of A?

A hybrid constraint/regularization:
1. Max-norm constraint: from the construction of An1,n2
2. Nuclear-norm regularization: sometimes produces tighter relaxation; shows benefits in

exact low-rank cases

Hybrid weighted estimator:

Â = arg min
‖A‖max≤β

{
R̂Ŵ (A) + µ‖A‖∗

}
,

where ‖ · ‖∗ denotes the nuclear norm, and β > 0, µ ≥ 0 are tunning parameters

Optimization:
1. Convex (original formulation): ADMM algorithm
2. Nonconvex (via a nonconvex formulation): projected gradient descent algorithm
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Theoretical guarantees
Theoretical guarantee of recovery: a non-asymptotic upper bound for
(n1n2)

−1‖Â−A?‖2
F (see Theorem 2)

Two asymptotic regimes:
asymptotically homogeneous: πL � πU (common asymptotic framework)
asymptotically heterogeneous: πL = O(πU) (a good model for highly varying
probabilities; empirical evidence from Mao et al. (2020))

where πL = minπij , πU = maxπij

See Section 5 for the comparison with existing work under asymptotically
homogeneous settings

For asymptotically heterogeneous settings, our bound scales with π−1/2
L , which is

significantly better than the existing upper bounds (π−1
L π1/2

U )

A new minimax lower bound: the scaling π−1/2
L cannot be improved (see Theorem 3)
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