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Learning as functional estimation

Maximum likelihood (ML)

ML’s statistical guarantees

Compressed maximum likelihood (CML)

CML’s statistical guarantees

Implications

Compressed maximum likelihood (CML) is a unified and
sample-efficient ML approach for statistical learning
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Learning as Functional Estimation

Notation

Z domain space

P distribution collection over Z
Q space equipped with pseudo-metric d (loss)

f ∶ P → Q functional

f̂ ∶ Z → Q estimator

Learning objective

Observe Z ∼ p
Design f̂ s.t. d(f̂(Z), f(p)) is small
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Maximum Likelihood (ML)

The most fundamental and general statistical estimation technique

ML plug-in estimator

Every z ∈ Z
ML mapping pz ∶= argmaxp∈P p(z)
Given Z ∼ p, ML (plug-in) estimate f(p

Z
)

Example – parameter estimation

Q = Θ parameter space with loss d

P collection of distributions indexed by Θ

f(pθ) = θ for each pθ ∈ P
ML estimate f(pθ⋆) = θ⋆, where θ⋆ maximizes pθ(Z)
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Statistical Guarantees of ML Methods

Classical i.i.d. sampling model

Sample space X , domain Z = X ∗

Sample size n, distribution pX ∈ ∆X

Z = (X1, . . . ,Xn) ∼ p = pnX , estimate f(pn
X
)

While the ML principle is quite natural, showing its finite-sample
efficiency (finite n) is often not easy

An argument bypassing such difficulty:

Lemma (Acharya et al. 2017)

Let df(p, q) = d(f(p), f(q)). For any Z, P, and accuracy ε > 0,

max
p∈P

Pr
Z∼p

(df(p, pZ) > 2ε) ≤ ∣Z∣ ⋅max
p∈P

Pr
Z∼p

(d(f(p), f̂(Z)) > ε).
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Compressed Maximum Likelihood (CML)

Definition

Co-domain Φ

Compressor ϕ ∶ Z → Φ

CML mapping pϕ(z) ∶= argmaxp∈P p(ϕ(z)), ∀z ∈ Z

Compressor’s quality for statistical learning

Typicality A compressor is (m,γ)-typical for m ∈ N and γ ∈ (0,1), if
for every p ∈ P, there is a size-m set T ⊆ Φ, s.t., p(T ) ≥ 1 − γ
Learnability Given error parameters ε, δ, a compressor enables
(ε, δ)-learning if there is an algorithm A ∶ Φ→Q,

Pr
Z∼p
(d(f(p), A(ϕ(Z))) > ε) ≤ δ, ∀p ∈ P
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Statistical Guarantees of CML Methods

Theorem (CML’s Competitiveness)

For any compressor ϕ that is (m,γ)-typical and enables
(ε, δ)-learning, distribution p ∈ P, and Z ∼ p,

Pr (df(p, pϕ(Z)) > 2ε) ≤ γ +m ⋅ δ

Corollary (Approximate CML (ACML))

For any β ≤ 1, z ∈ Z, and compressor ϕ, a distribution p̃ϕ(z) ∈ P is
a β-approximate CML if p̃ϕ(z)(ϕ(z)) ≥ β ⋅ pϕ(z)(ϕ(z))

Under the conditions in Theorem, a β-approximate CML achieves

Pr (df(p, p̃ϕ(Z)) > 2ε) ≤ γ +m ⋅ δ/β
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Implications

Compressed maximum likelihood (CML) is a unified and
sample-efficient ML approach for statistical learning:

Continuous structured densities

E.g., Guassian mixtures

Discrete structured distributions

E.g., Poisson/binomial mixtures

Distribution probability multisets; profile maximum likelihood (PML),
introduced in Orlitsky et al. 2004

E.g., Coin tosses – {ph, pt}
Symmetric distribution functionals; variation of Acharya et al. 2017

E.g., Shannon entropy, support size
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Thank you


