
Modularity in Reinforcement Learning 
via Algorithmic Independence in Credit Assignment

1

Sidhant Kaushik* Sergey Levine Thomas L. GriffithsMichael Chang*



You are in the burrito business. And you make some world-class burritos.



Your team is trained to follow this policy:



Heat Tortillas

First: you heat the tortilla.



Add VegetablesHeat Tortillas

Then: you add the vegetables.



Add MeatAdd VegetablesHeat Tortillas

And last: you add the meat.



Add MeatAdd VegetablesHeat Tortillas

Things are going great.



Add MeatAdd VegetablesHeat Tortillas

Until this week.



Add MeatAdd VegetablesHeat Tortillas

This week the meat was contaminated from the meat supplier.



Add MeatAdd VegetablesHeat Tortillas

Customers got sick and gave you a lot of angry reviews.



Add MeatAdd VegetablesHeat Tortillas

!!!

Continuing with the optimal policy from before will only make things worse.



Add VegetablesHeat Tortillas Add Meat

Clearly, credit assignment should modify the decision of adding meat,



Add VegetablesHeat Tortillas Add Tofu

perhaps replacing it with tofu.



?

Add VegetablesHeat Tortillas

?
Add Meat

But how should we perform credit assignment on other decisions from the same decision sequence?



Add VegetablesHeat Tortillas Add Meat

Intuitively, nothing:



Add VegetablesHeat Tortillas

we should be isolating credit assignment only to the last step, without affecting anything else.

Add Meat



Add MeatAdd VegetablesHeat Tortillas

The key intuition here is that if we have a modular way to perform credit assignment,



Add MeatAdd VegetablesHeat Tortillas

such that it is possible to modify one component without simultaneously modifying others, 



Add MeatAdd VegetablesHeat Tortillas

such that it is possible to modify one component without simultaneously modifying others, 



Add MeatAdd VegetablesHeat Tortillas

such that it is possible to modify one component without simultaneously modifying others, 



Add TofuAdd VegetablesHeat Tortillas

then the system could more efficiently adapt to new contexts that have not been anticipated before.



Unfortunately, popular learning algorithms do not seem to do a good job at this.

Problem



Here is the same scenario, represented as a transfer problem in a simple Markov decision process.

Problem
Training Transfer

optimal decision sequence optimal decision sequence



In the training task, the optimal policy is the sequence of actions A, B, then C.

Problem

CBA

Training Transfer

optimal decision sequence optimal decision sequence



In the transfer task, the optimal last action switches from C to D.

Problem

CBA DBA

Training Transfer

optimal decision sequence optimal decision sequence



The blue curve represents PPO, an on-policy policy gradient method.

Problem

PPO: Schulman, John, et al. "Proximal policy optimization algorithms." (2017).

CBA DBA

Training Transfer

optimal decision sequence optimal decision sequence



The red curve represents CVS, an on-policy single-step temporal difference method.

Problem

PPO: Schulman, John, et al. "Proximal policy optimization algorithms." (2017).

CVS: Chang, Michael, et al. "Decentralized Reinforcement Learning: Global 
Decision-Making via Local Economic Transactions." ICML (2020).
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Both have similar learning efficiency on the training task.

Problem

CBA DBA

Training Transfer

optimal decision sequence optimal decision sequence



But when we transfer, PPO is not efficient at all at adapting to the new situation.

Problem

CBA DBA

Training Transfer

optimal decision sequence optimal decision sequence



It converges 13.9 times as slow as CVS on average.

Problem

CBA DBA

Training Transfer

optimal decision sequence optimal decision sequence



This requires explanation. What is the cause of this enormous gap in transfer efficiency?

Problem

CBA DBA

Training Transfer

optimal decision sequence optimal decision sequence



Independent Credit Assignment
What this talk is about

In this talk, I will talk about independent credit assignment.



Independent Credit Assignment
What this talk is about

What it is, how it could explain this gap in transfer efficiency,



Independent Credit Assignment
What this talk is about

and how it can be used to design and evaluate more modular learning algorithms.



We want algorithms that can transfer efficiently

What We Want Learning algorithms that transfer efficiently



by re-using previously optimal decisions for solving new tasks

What We Want Learning algorithms that transfer efficiently
Re-use previously optimal decisions for solving new tasks



modifying only what needs to be modified,

What We Want Learning algorithms that transfer efficiently
Re-use previously optimal decisions for solving new tasks

Modify only what needs to be modified



and not modifying what does not need to be modified.

What We Want Learning algorithms that transfer efficiently
Re-use previously optimal decisions for solving new tasks

Modify only what needs to be modified
Do not modify what does not need to be modified



We have started with a vague hypothesis, also echoed in the machine learning community,

What We Want Learning algorithms that transfer efficiently
Re-use previously optimal decisions for solving new tasks

Modify only what needs to be modified
Do not modify what does not need to be modified

Hypothesis “Modularity → more efficient transfer”



that modularity could enable more efficient transfer.

What We Want Learning algorithms that transfer efficiently
Re-use previously optimal decisions for solving new tasks

Modify only what needs to be modified
Do not modify what does not need to be modified

Hypothesis “Modularity → more efficient transfer”



But the challenge to precisely expressing this hypothesis, let alone testing it,

What We Want Learning algorithms that transfer efficiently
Re-use previously optimal decisions for solving new tasks

Modify only what needs to be modified
Do not modify what does not need to be modified

Hypothesis “Modularity → more efficient transfer”
↑

What does this mean for learning systems?



is that we lack a precise language for describing what modularity means in the context of a learning system

What We Want Learning algorithms that transfer efficiently
Re-use previously optimal decisions for solving new tasks

Modify only what needs to be modified
Do not modify what does not need to be modified

Hypothesis “Modularity → more efficient transfer”
↑

What does this mean for learning systems?



and how it depends on the structure of credit assignment.

What We Want Learning algorithms that transfer efficiently
Re-use previously optimal decisions for solving new tasks

Modify only what needs to be modified
Do not modify what does not need to be modified

Hypothesis “Modularity → more efficient transfer”
↑

What does this mean for learning systems?



This is because modularity has traditionally been defined

What We Want Learning algorithms that transfer efficiently
Re-use previously optimal decisions for solving new tasks

Modify only what needs to be modified
Do not modify what does not need to be modified

Hypothesis “Modularity → more efficient transfer”

What Currently Exists

↑
What does this mean for learning systems?

Traditional conception of modularity: independent causal mechanisms
Defined for static causal graphs describing static systems



for static systems whose mechanisms are assumed fixed, 

What We Want Learning algorithms that transfer efficiently
Re-use previously optimal decisions for solving new tasks

Modify only what needs to be modified
Do not modify what does not need to be modified

Hypothesis “Modularity → more efficient transfer”

What Currently Exists

↑
What does this mean for learning systems?

Traditional conception of modularity: independent causal mechanisms
Defined for static causal graphs describing static systems



whereas learning systems are dynamic systems whose mechanisms evolve over time.

What We Want Learning algorithms that transfer efficiently
Re-use previously optimal decisions for solving new tasks

Modify only what needs to be modified
Do not modify what does not need to be modified

Hypothesis “Modularity → more efficient transfer”

What Currently Exists

↑
What does this mean for learning systems?

Traditional conception of modularity: independent causal mechanisms
Defined for static causal graphs describing static systems

Learning systems are dynamic systems.



The problem we face is to extend the static notion of modularity to learning systems,

What We Want Learning algorithms that transfer efficiently
Re-use previously optimal decisions for solving new tasks

Modify only what needs to be modified
Do not modify what does not need to be modified

Hypothesis “Modularity → more efficient transfer”

What Currently Exists

↑
What does this mean for learning systems?

Traditional conception of modularity: independent causal mechanisms
Defined for static causal graphs describing static systems

Learning systems are dynamic systems.

Problem



and understand its implications for credit assignment, in particular for reinforcement learning.

What We Want Learning algorithms that transfer efficiently
Re-use previously optimal decisions for solving new tasks

Modify only what needs to be modified
Do not modify what does not need to be modified

Hypothesis “Modularity → more efficient transfer”

What Currently Exists

↑
What does this mean for learning systems?

Traditional conception of modularity: independent causal mechanisms
Defined for static causal graphs describing static systems

Learning systems are dynamic systems.

Problem



Our work proposes a candidate solution for this problem.

What We Want Learning algorithms that transfer efficiently
Re-use previously optimal decisions for solving new tasks

Modify only what needs to be modified
Do not modify what does not need to be modified

Hypothesis “Modularity → more efficient transfer”

What Currently Exists

↑
What does this mean for learning systems?

Traditional conception of modularity: independent causal mechanisms
Defined for static causal graphs describing static systems

Learning systems are dynamic systems.

Problem
Our Work



Main Takeaway

To build learning algorithms that transfer efficiently, 
we need independently modifiable components.

To get independently modifiable components, we need 
a credit assignment mechanism whose causal structure 

makes independent modification possible.

My goal for this talk is to convince you that modularity in learning systems



requires it to be possible for the credit assignment mechanism to modify the learnable mechanisms independently. 

Main Takeaway

To build learning algorithms that transfer efficiently, 
we need independently modifiable components.

To get independently modifiable components, we need 
a credit assignment mechanism whose causal structure 

makes independent modification possible.



Modularity is just as much about independent credit assignment as it is about independent learnable functions. 

Main Takeaway

To build learning algorithms that transfer efficiently, 
we need independently modifiable components.

To get independently modifiable components, we need 
a credit assignment mechanism whose causal structure 

makes independent modification possible.



This talk is organized into three parts.



Modularity for Dynamic Systems

In the first part, I extend the definition of modularity developed in the causal literature to describe dynamic systems.



Independent Credit Assignment

In the second part, I show that learning algorithms are examples of dynamic systems and
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Independent Credit Assignment

propose a test to determine whether the credit assignment mechanisms can modify the learnable components independently.
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At this point we will be able to test our hypothesis because we now have a precise definition of modularity for learning systems
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and a practical criterion for testing whether a learning algorithm meets that definition.
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And finally, I test our hypothesis on discrete-action reinforcement learning algorithms.
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Testing the hypothesis

Hypothesis
Modularity → more efficient transfer

Modularity of Reinforcement Learning Algorithms
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Let’s start with modularity for dynamic systems.
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We first review modularity for static systems, formalized in the causal literature as the algorithmic independence of mechanisms.
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Modularity is algorithmic independence of mechanisms.



We call a dynamic system the process that encompasses a sequence of modifications to the static system.
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Modularity is algorithmic independence of mechanisms.

A dynamic system encompasses a sequence of modifications to the mechanisms.

Modularity in a dynamic system is the conditional algorithmic independence of mechanisms, conditioned on its previous state.



Viewing a system along its sequence of modifications then gives us a natural extension of modularity as  

In
de

pe
nd

en
t C

re
di

t A
ss

ig
nm

en
t

M
od

ul
ar

ity
 o

f R
L 

Al
go

rit
hm

s

Modularity is algorithmic independence of mechanisms.

A dynamic system encompasses a sequence of modifications to the mechanisms.

Modularity in a dynamic system is the conditional algorithmic independence of mechanisms, conditioned on its previous state.
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the conditional algorithmic independence of its mechanisms, conditioned on the system’s previous state.
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Modularity is algorithmic independence of mechanisms.

A dynamic system encompasses a sequence of modifications to the mechanisms.

Modularity in a dynamic system is the conditional algorithmic independence of mechanisms, conditioned on its previous state.
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Here is a causal graph.

Modularity = Algorithmic Independence

𝑦

𝑤

𝑥

𝑧



This is the same graph, with the mechanisms that produce each node drawn explicitly.

Modularity = Algorithmic Independence

𝑦

𝑤

fw

𝑥

fx

fy

𝑧

fz



Then modularity of this system has been previously formalized as the algorithmic independence of the mechanisms,

Modularity = Algorithmic Independence
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meaning that knowing the source code of the program that computes fj does not simplify the program for computing fk.

Modularity = Algorithmic Independence
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See the paper for more background and explanation of notation.

Modularity = Algorithmic Independence
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What does algorithmic independence of mechanisms give us?

Modularity = Algorithmic Independence
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Let’s intervene on the graph by modifying one of its mechanisms. 

Modularity = Algorithmic Independence

𝑦
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Because of algorithmic independence, this intervention does not affect the other mechanisms,

Modularity = Algorithmic Independence
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even if it affects the nodes.

Modularity = Algorithmic Independence
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Let’s intervene on the graph again by modifying another mechanism.

Modularity = Algorithmic Independence
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And another.

Modularity = Algorithmic Independence
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Each time we modify a mechanism we generate a new static system, represented by a new causal graph.

Dynamic System: A Sequence of Interventions
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Each time we modify a mechanism we generate a new static system, represented by a new causal graph.

Dynamic System: A Sequence of Interventions
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Each time we modify a mechanism we generate a new static system, represented by a new causal graph.

Dynamic System: A Sequence of Interventions
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Each time we modify a mechanism we generate a new static system, represented by a new causal graph,

Dynamic System: A Sequence of Interventions
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where the outer process that modifies the causal mechanism is the human.

Dynamic System: A Sequence of Interventions
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We call the sequence of static systems, along with the outer process that modifies it, a dynamic system. 

Dynamic System: A Sequence of Interventions
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where each time-slice represents a different causal graph.

Dynamic System: A Sequence of Interventions
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Let’s unroll the outer process out more explicitly as a dynamic graph: a Markov chain over graphs.

Dynamic System: A Sequence of Interventions
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Then we can naturally extend the static notion of modularity to a dynamic system 

Modularity in Dynamic Systems
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as the algorithmic independence of mechanisms, conditioned on the previous graph before the intervention.

Modularity in Dynamic Systems
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To recap, 
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modularity has been previously formalized as the algorithmic independence of the mechanisms of a causal graph.
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Algorithmic independence
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A dynamic graph represents a sequence of interventions along with the outer process that performs these interventions.
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Then we formalize modularity in a dynamic system as conditional algorithmic independence of mechanisms.
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Algorithmic independence

Sequence of interventions

Dynamic systems
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In the next part of the talk, 
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I show that learning algorithms are themselves dynamic systems,
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that a modular learning algorithms requires the credit assignment mechanism to produce independent gradients,
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Learning algorithms are dynamic systems.

Modularity requires independent feedback (e.g. gradients).



and that you can test for this property by formally treating learning algorithms as causal graphs and checking for d-separation.
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Learning algorithms are dynamic systems.

Modularity requires independent feedback (e.g. gradients).

Formally represent learning algorithms as algorithmic causal graphs
independence = d-separation.



Learning algorithms neatly fall into the dynamic systems framework.

Learning Algorithms are Dynamic Systems
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The causal mechanisms correspond to learnable functions.

Learning Algorithms are Dynamic Systems
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The causal nodes correspond to their inputs and outputs.

Learning Algorithms are Dynamic Systems
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Each static graph represents a forward pass of the learning system.

Learning Algorithms are Dynamic Systems
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Instead of the outer process being a human who intervenes on the learnable functions, 

Learning Algorithms are Dynamic Systems
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the outer process is the credit assignment process of the learning algorithm,

Learning Algorithms are Dynamic Systems

fi+1

gi+1

hi+1

𝑔%

hi

𝑠!

gi

𝑠"

fi

𝑠#

𝑠$

𝑔%&"

𝑠!

𝑠"

𝑠#

𝑠$

Outer Process: 
Credit Assignment Process



which we can split into two parts:

Learning Algorithms are Dynamic Systems
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the credit assignment mechanism, which takes the previous graph and produces gradients for the learnable functions,

Learning Algorithms are Dynamic Systems
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and the update rule, which modifies the learnable functions given the gradients. 

Learning Algorithms are Dynamic Systems
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Typically the update rule is assumed to be a fixed operation, like gradient descent, which factorizes over the learnable functions.

Learning Algorithms are Dynamic Systems
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Update
Rule

Update
Rule

Update
Rule

The question is: what constraint should the credit assignment mechanism satisfy

Modularity Constraint on Credit Assignment
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to modify the learnable functions independently?

Modularity Constraint on Credit Assignment
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We show in our paper that it must produce gradients that are algorithmically independent

Algorithmically Independent Gradients
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conditioned on the graph in the previous iteration.

Algorithmically Independent Gradients
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Then if the gradients are conditionally independent, 

Algorithmically Independent Gradients
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the learnable functions in the next iteration will also be conditionally independent.

Algorithmically Independent Gradients
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Check out the paper for our theorem that formally states that a learning algorithm is modular

Main Result

Theorem (modularity, informal): 
A learning algorithm is modular if its learnable mechanisms do not share weights (i.e. the network is 
factorized) and if its credit assignment mechanism produces independent gradients.



if its learnable mechanisms do not share weights and if its credit assignment mechanism produces independent gradients.

Main Result 1

Theorem (modularity, informal): 
A learning algorithm is modular if its learnable mechanisms do not share weights (i.e. the network is 
factorized) and if its credit assignment mechanism produces independent gradients.



But algorithmic mutual information is not computable. 

A Criterion for Modularity
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We need a practical criterion to design and evaluate credit assignment mechanisms that produce independent gradients.

A Criterion for Modularity
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It turns out we can get this criterion by flattening the graph of the learner, and the graph of credit assignment

A Criterion for Modularity
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into one big graph, where both the mechanisms and data are treated as nodes.

A Criterion for Modularity
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Then we can simply test if the gradients are conditionally independent by inspecting the graph for d-separation.
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They are d-separated if each gradient is produced by a different function.

A Criterion for Modularity

𝑔%

hi

𝑠!

gi

𝑠"

fi

𝑠#

𝑠$

𝛿g

𝛿h

𝛿f

𝐼 𝛿& , 𝛿' , 𝛿(| 𝑔$ =# 0
Gradients are d-separated ✓

f g h



They are d-separated if each gradient is produced by a different function.
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They are d-separated if each gradient is produced by a different function.
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If there is a hidden variable, then the gradients are not d-separated, and thus not conditionally independent.

A Criterion for Modularity
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This makes intuitive sense because if we want the mechanisms to be independent 

A Criterion for Modularity
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there can be no dependency introduced through the causal structure internal to the credit assignment mechanism.

A Criterion for Modularity
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Check out the paper for our theorem that formally connects d-separation and independent gradients. 

Main Result 2

Theorem (modularity criterion, informal): 
Assuming faithfulness, the credit assignment mechanism produces independent gradients if 
and only if the gradients are d-separated by the inputs of the credit assignment mechanism.
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learning algorithms are examples of dynamic systems.
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If we want the learning algorithm to be modular, 
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then the credit assignment mechanism needs to produce independent gradients
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to modify the learnable mechanisms independently.
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By treating the learning algorithm as itself an algorithmic causal graph,
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Learning algorithms are dynamic systems.

Modularity requires independent feedback (e.g. gradients).

Formally represent learning algorithms as algorithmic causal graphs
independence = d-separation.
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we can test for this property, without any training, by checking whether the gradients are d-separated.
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Formally represent learning algorithms as algorithmic causal graphs
independence = d-separation.



At this point we have developed a language for precisely expressing our hypothesis
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by presenting a formal definition of modularity in learning systems, as well as a criterion to test for it.
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In the last part of the talk, we can finally ask whether modularity in reinforcement learning improves transfer efficiency.
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We first compare major classes of reinforcement learning algorithms
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Theoretical question: Which reinforcement learning algorithms produce independent gradients?
policy gradients 
n-step temporal difference algorithms 
single-step temporal difference algorithms ✓

empirical evidence suggests so



on whether they produce independent gradients over a credit assignment update.
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policy gradients 
n-step temporal difference algorithms 
single-step temporal difference algorithms ✓

empirical evidence suggests so



Then we empirically test whether having this property correlates with transfer efficiency.
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Theoretical question: Which reinforcement learning algorithms produce independent gradients?
policy gradients 
n-step temporal difference algorithms 
single-step temporal difference algorithms ✓

Empirical question: Does modularity improve transfer efficiency?
empirical evidence suggests so



We now apply our framework to reinforcement learning algorithms by representing these algorithms as causal graphs.

RL Algorithms as Causal Graphs
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In reinforcement learning, the forward pass of the learner is a rollout in the MDP.

RL Algorithms as Causal Graphs

𝑔%

𝜋

𝜋

transition

transition

𝑠&'(

𝑠&

𝑠&)(



𝑔%

𝜋

𝜋

transition

transition

𝑠&'(

𝑠&

𝑠&)(

When we consider modularity in reinforcement learning, 
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we are interested in the independence of the decision mechanisms that control each value that the action can take on.
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In this case there are three possible values of the action variable.
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Each decision mechanism produces a “bid,” which could correspond to an action probability or estimated Q-value.
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These bids get filtered by a selection mechanism,
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such as a categorical sampler for policy gradient methods,
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or an epsilon greedy sampler or Vickrey auction for action-value methods.
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Since we are only interested in the modularity of these decision mechanisms, we can absorb the other operations into the edges,
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and use brackets to denote that we bundle the states, actions, and rewards together.
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We have now decomposed the causal graph of a single step of the forward pass of the RL algorithm.
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Here is the causal decomposition again, shown across time. 
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As before, the credit assignment mechanism is the outer process that produces gradients for the graph.

Structure of Credit Assignment in RL
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We now analyze the causal structure of the credit assignment mechanism for various RL algorithms.

Structure of Credit Assignment in RL
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For policy gradient methods, because of the softmax in the policy, the gradients of the decision mechanisms

Policy Gradients: Not Modular
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all share a normalization constant as a hidden variable, so the gradients produced are not d-separated.
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Therefore, policy gradient algorithms are not modular.

Policy Gradients: Not Modular

Corollary (policy gradient): Policy gradient methods do not produce independent gradients. 
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For n-step temporal difference methods, the gradients all share some sum over sampled rewards as a hidden variable,

Credit
Assignment
Mechanism

𝛿!"#$

𝛿!$

N-Step Temporal Difference: Not Modular

sum of rewards



𝑔%

[𝑠&)(]

[𝑠&]

fk

[𝑠&'(]

fk

𝑏&*

𝑏&)(*

𝑏&'(*

so the gradients produced are not d-separated,
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so n-step temporal difference algorithms are not modular either.

N-Step Temporal Difference: Not Modular

Corollary (n-step TD): n-step temporal difference methods do not produce independent gradients. 
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This leaves single-step temporal difference methods, which also have an intermediate variable: the TD error.
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But unlike policy gradient or n-step temporal difference methods, this hidden variable is not shared
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because it only is connected to the gradient of the decision mechanism of the action that actually was taken
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while the gradients of the other decision mechanisms remain zero.
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Therefore, single-step temporal difference algorithms are modular, when the trajectories are acyclic. See paper for more details.

Single-Step Temporal Difference: Modular*

Corollary (single-step TD): single-step temporal difference methods produce independent gradients*. 

*For acyclic trajectories, see paper for more details.



Credit Assignment in RL: Summary

Again, the gradients for policy gradient and n-step temporal difference methods are not d-separated,  
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Credit Assignment in RL: Summary

whereas the gradients for single-step temporal difference methods are, in generic cases.  

shaded nodes = conditioned on
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To recap, we want to test the hypothesis of whether modularity improves transfer.
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To do that, we need to determine which reinforcement learning algorithms are indeed modular.
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To answer this question, we represented reinforcement learning algorithms as causal graphs. 
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We identified that all policy gradient methods and n-step temporal difference methods do not produce independent gradients
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because the causal structure of their credit assignment mechanisms contain a shared hidden variable.
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In contrast, in generic cases single-step temporal difference methods do produce independent gradients, and thus are modular. 

In
de

pe
nd

en
t C

re
di

t A
ss

ig
nm

en
t

M
od

ul
ar

ity
 o

f R
L 

Al
go

rit
hm

s

update update update

𝛿"%#$ 𝛿"% 𝛿"%&$

𝑏"&$%#$ 𝑏"&$%&$𝑏"&$%

max
'
𝑏"&$
( + 𝑟" − 𝑏"%

𝑟"

𝑏"%&$00

✓ ✓

M
od

ul
ar

ity
 fo

r D
yn

am
ic

 S
ys

te
m

s

Theoretical question: Which reinforcement learning algorithms produce independent gradients?
policy gradients ❌
n-step temporal difference algorithms ❌
single-step temporal difference algorithms ✓



Having identified which RL algorithms are modular and which are not, 
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we now are in the position to test whether modularity improves transfer efficiency.

In
de

pe
nd

en
t C

re
di

t A
ss

ig
nm

en
t

M
od

ul
ar

ity
 o

f R
L 

Al
go

rit
hm

s

Expressing the hypothesis precisely

Testing the hypothesis

Hypothesis
Modularity → more efficient transferM

od
ul

ar
ity

 fo
r D

yn
am

ic
 S

ys
te

m
s

Theoretical question: Which reinforcement learning algorithms produce independent gradients?
policy gradients ❌
n-step temporal difference algorithms ❌
single-step temporal difference algorithms ✓

Empirical question: Does modularity improve transfer efficiency?



As illustrated by our motivational example, we are interested in transfer problems that require only sparse changes 
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to a sequence of previously optimal decisions, because that tests to what extent an algorithm can separate
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what needs to be modified
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from what does not need to be modified.
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We can represent this kind of transfer problem as a simple MDP. Circles represent states. Edges represent state transitions.

Experimental Setup: MDP



Here we label some transitions with the actions that cause them.
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We have a start state and goal state. 
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During training, the optimal decision sequence is A, B then C.
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To generate the transfer task from the training task, 
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we modify the transition that B corresponds to.
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Now the original sequence of decisions is suboptimal,
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but swapping action C for action D, in this case, is now the optimal thing to do.
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Our MDP has six possible values for the action variable, so we will have six decision mechanisms.

Experimental Setup: MDP
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Similar to how analysis of d-separation is conducted with triplets of nodes, 
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we enumerated all possible topologies of triplets of decisions.
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And for each topology we generated three transfer tasks
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by enumerating all the ways of making an isolated change to the optimal decision sequences.
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by enumerating all the ways of making an isolated change to the optimal decision sequences.
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by enumerating all the ways of making an isolated change to the optimal decision sequences.
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This includes our motivating example, where the last action should change from C to D. We compare three algorithms:

Empirical Results
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the Cloned Vickrey Society, or CVS, which is a modular algorithm,

Empirical Results
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PPO, which is not modular because the policy is not factorized along the actions and its gradients are not independent,

Empirical Results
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Schulman et al. (arXiv 2017)
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and PPOF, a variant of PPO with a policy network that is factorized over the action variable. 
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PPOF is also not modular because its gradients are not independent.
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We chose PPOF as a baseline because while it is intuitive how network factorization contributes to modularity,
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comparing CVS with PPOF specifically tests the role of independent gradients in enabling transfer efficiency. 

Empirical Results
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When we consider all nine transfer settings, across the board, CVS is consistently more sample efficient in the transfer task

Empirical Results
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When we consider all nine transfer settings, across the board, CVS is consistently more sample efficient in the transfer task
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despite having comparable training efficiency in the training task.

Empirical Results
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Thus, we have tested our hypothesis, and it survives the experimental test. 
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Modularity does seem to correlate with improvements in transfer efficiency.

Empirical Results

Expressing the hypothesis precisely

Testing the hypothesis

Hypothesis
Modularity → more efficient transfer

Modularity Correlates with Improved Transfer Efficiency.



We dove deeper to find an explanation for why this hypothesis seems to hold.
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We measured the outputs of the decision mechanisms and observed how they changed between training and transfer.
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These outputs are the bids: the higher the bid, the more likely the action for that decision mechanism will be selected.
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Here we see the bids for action C both drop because they are suboptimal in the transfer task, 
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while the bids for action D rise because it is now the new optimal action. 
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Notice how much faster CVS, in red, switches compared to PPOF, in blue, 
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possibly because the decisions mechanisms of CVS can be adjusted independently, 
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whereas for PPOF they are tied together by a softmax.
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Actions A and B are the optimal actions at states 0 and 1, and we see that both of them get affected by the transfer task
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but CVS recovers much faster than PPOF.
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To conclude, we started with the hypothesis that modularity improves transfer. 
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But we had to build up some formalism to even get to the point where we could test this hypothesis.
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First we had to extend the definition of modularity developed in the causal literature to describe dynamic systems.
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Modularity is algorithmic independence of mechanisms.

A dynamic system encompasses a sequence of modifications to the mechanisms.

Modularity in a dynamic system is the conditional algorithmic independence of mechanisms, conditioned on its previous state. 
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Then, we connected learning algorithms to causal graphs and
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proposed how to test whether the credit assignment mechanism can modify the learnable components independently.
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Finally we applied this framework to determine which RL algorithms are modular
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and showed that the hypothesis survives a suite of empirical tests.
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What we learned from all of this is the following takeaway message: 
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Main Takeaway

To build learning algorithms that transfer efficiently, 
we need independently modifiable components.

To get independently modifiable components, we 
need a credit assignment mechanism whose causal 
structure makes independent modification possible.
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we need a credit assignment mechanism whose causal structure makes independent modification possible.
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