

Factor-Analytic Inverse Regression for High-dimensional, Small-sample **Dimensionality Reduction**

Aditi Jha*, Michael J. Morais*, Jonathan W. Pillow Princeton Neuroscience Institute

X High-dimensional neural activity

X High-dimensional neural activity

Decode stimulus

Y

Can we find a subset of dimensions which preserves information about Y in X?

X High-dimensional neural activity

Decode stimulus

Y

Sufficient Dimension Reduction (SDR)

Can we find a subset of dimensions which preserves information about Y in X?

Can we find a subset of dimensions which preserves information about Y in X?

X High-dimensional neural activity

Data is precious! High-dimensional, small-sample size

Decode stimulus

Y

Sufficient Dimension Reduction (SDR)

• N (number of samples) > p (data-dimensionality)

• Performance degrades sharply with decrease in N

 $X \mid Y = y$

Ŋ

 \mathbb{R}^{p}

 $X \mid Y = y$

Ľ

(d < < p)

 $X_{CS} \mid Y \sim \mathcal{N}(\alpha \nu_y, \alpha \Sigma_y \alpha^{\top})$

Class-specific covariance

 $X \mid Y \sim \mathcal{N}(\alpha \nu_{y}, \alpha \Sigma_{y} \alpha^{\top} + \alpha_{0} \Sigma_{0} \alpha_{0}^{\top})$

Class-specific covariance

Shared covariance

 $X \mid Y \sim \mathcal{N}(\alpha \nu_{y}, \alpha \Sigma_{y} \alpha^{\top} + \alpha_{0} \Sigma_{0} \alpha_{0}^{\top} + \Psi)$

Class-specific Shared covariance covariance

Independent Noise

CFAD: $X \mid Y \sim \mathcal{N}(\alpha \nu_{y}, \alpha \Sigma_{y} \alpha^{\top} + \alpha_{0} \Sigma_{0} \alpha_{0}^{\top} + \Psi)$

Riemannian Optimization

Inference

- Maximize: $\mathscr{L}(\alpha, \alpha_0, \Sigma_y, \Sigma_0, \Psi)$
 - Orthonormal matrices: α , α_0 $\alpha \perp \alpha_0$

Maximize: $\mathscr{L}(\alpha, \alpha_0, \Sigma_y, \Sigma_0, \Psi) + \log(\text{prior})$

smooth-CFAD

Visual Object Recognition

 $X \to \alpha^{\mathsf{T}} X \to Y$ $\mathbb{R}^p \quad \mathbb{R}^d$

Haxby et. al., 2001

Visual Object Recognition

8-class classification accuracy; 12.5% is chance performance

SUBJECT	d	SCFAD	CFAD	LDA	SIR	SAVE	DR	LAD	PCA	LOL	RRR		
1	10	62.4	57.3	59.3	59.5	10.0	54.1	52.1	21.9	30.1	23.0		
2	10	71.8	68.9	58.9	59.9	12.1	62.3	36.5	23.5	31.3	18.7		
3	10	66.4	63.0	60.3	62.1	10.2	61.7	44.0	32.8	42.3	16.0		
4	20	62.2	61.2	22.0	20.8	11.6	30.3	29.3	24.8	26.8	19.6		
5	10	72.8	69.8	60.1	61.8	12.2	63.5	50.8	34.7	41.2	18.1		
6	10	73.1	70.9	71.5	70.8	10.7	71.9	65.0	39.7	53.0	21.2		
					EXISTING SUK METNOAS								

N = 100 per class, $p \in (307 - 675)$

1. Vogelstein et. al., 2017

2. Cook, 2007; Cook & Forzani, 2009

HCP Working Memory Task

4-class classification accuracy; 12.5% is chance performance

SUBJECT	scfad		CFAD	LDA	PCA	LOL	RRR
	d	%	%	%	%	%	%
1	10	73.9	70.9	64.7	67.4	72.7	20.3
2	10	85.5	83.3	84.8	77.3	82.7	24.4
3	10	93.2	91.8	88.6	80.1	85.0	20.8
4	20	86.2	86.0	82.2	82.6	84.8	24.5
5	10	85.1	83.5	86.3	82.2	82.0	25.2
6	10	94.1	93.0	87.1	85.2	87.5	25.0
7	10	91.2	89.9	88.4	88.2	91.0	26.7
8	10	87.1	83.3	81.6	82.6	82.7	25.2
9	10	89.9	87.3	87.8	79.2	79.9	22.5
10	10	92.8	89.8	92.6	86.6	87.9	29.2

N = 132 per class, p = 3093 (N < p)

It shows improved classification performance on real-world fMRI datasets.

Conclusion

CFAD adds to the limited literature on high-dimensional small-sample size data.