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Motivation - Why should we be robust?

This paper: Robustness for model parameter uncertainty

https://en.wikipedia.org/wiki/Robot, https://en.wikipedia.org/wiki/Planet
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Main “informal” question

Question: Can we promise robustness when the “test” model is P̄ ?

We develop a model-free RL algorithm that learns a policy that is robust against
parameter uncertainty

We provide provable convergence guarantees for the proposed model-free RL
algorithm (Policy Evaluation + Policy Iteration)

We verify the algorithm in simulation on OpenAIGym (Brockman et al., 2016)
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Robust Classical MDP Formulation

Robust MDP = {S,A,P, r} This paper

Let P = Po + U , U is the parameter uncertainty set.
[indexed by (s,a)] Po ∈ P

States S, actions A, rewards r are known

Robust MDP objective

maxπ minP∈P EP [
∑∞

t=0 α
tr(st , π(st)) ], 0 < α < 1

Find policy that performs best under the worst model.
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Dynamic Programming for Robust MDP

Robust policy evaluation for fixed policy π. Robust value function:
Vπ(s) = minP∈PEP [

∑∞
t=0 α

tr(st , π(st)) | s0 = s].

Robust Bellman operator for Robust PE

Tπ(Vπ(s)) = r(s, π(s)) + α min
P∈P

∑
s′

Ps,π(s)(s
′)Vπ(s ′)

Optimal robust policy and value: π∗ = arg maxπ Vπ and V ∗ = maxπ Vπ

Hard problem because of minP∈P

Question: How do we compute V ∗ and π∗?

Solved by Robust policy iteration (Iyengar, 2005), Robust value iteration
(Nilim and El Ghaoui, 2005)
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DP for Robust MDP

Solved by Robust policy iteration (Iyengar, 2005)

Under “rectangularity” condition (uncorrelated uncertainties across (s,a)), it
suffices to consider stationary control policies and stationary nature uncertain
models

Tπ is a contraction in sup norm and Vπ is its unique fixed point. Solved by
iterating

Vk+1 = Tπ(Vk)

Define T (V ) = maxπ Tπ(V ). T is a contraction in sup norm and V ∗ is its
unique fixed point

Optimal robust (stationary) policy π∗ satisfies

π∗ = arg max
π

Tπ(V ∗)

Also solved by Robust value iteration (Nilim and El Ghaoui, 2005)
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DP for Robust MDP

Solved by Robust value iteration (Nilim and El Ghaoui, 2005)

Under “rectangularity” condition (uncorrelated uncertainties across (s,a)), it
suffices to consider stationary control policies and stationary nature uncertain
models

Optimal robust value function V ∗, solved by iterating

Vk+1(s) = max
a

(r(s, a) + α min
P∈P

∑
s′

Ps,a(s ′)Vk(s ′))

Optimal robust (stationary) policy π∗, solved by

a∗(s) = arg max
a

(r(s, a) + α min
P∈P

∑
s′

Ps,a(s ′)V ∗(s ′))

Also solved by Robust policy iteration (Iyengar, 2005)
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Robust RL - Main Challenges

Main goal: Find robust optimal policy π∗ when P is unknown.

Challenge: Recall P = Po + U . When Po is known, we can construct U such that
P is a valid collection of probability vectors.

Example (Spherical uncertainty set)

U := {x | ‖x‖2 ≤ 1,
∑

s∈S xs = 0,−Po(s′) ≤ xs′ ≤ 1− Po(s′), ∀s′ ∈ S}

But, we do not know Po . So, we approximate the uncertainty set as Û .

Example (Spherical “approximate” uncertainty set)

Û := {x | ‖x‖2 ≤ 1,
∑

s∈S xs = 0}

Challenge: We only get samples from Po , and not from every P ∈ P.
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Key tools used in this paper

Additional challenge: Large scale problems incur “curse of dimensionality”

Two totems to address this curse This paper

Linear function approximation for Vπ(s)

Given state-dependent features φ(s) ∈ RL, L << |S|: V̄π(s) = φ(s)>wπ

generalization capabilities (Tamar et al., 2014; Lim and Autef, 2019; Panaganti and Kalathil, 2020)

Robust TD(λ) operator

T (λ)
π (V ) = (1− λ)

∞∑
m=0

λmTm+1
π (V ), λ ∈ [0, 1)

multi-step boosting (Van Seijen et al., 2016; Altahhan, 2020; Panaganti and Kalathil, 2020)
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Robust Policy Evaluation Challenge

T
(λ)
π is nonlinear and very difficult to estimate

Denoting σB(v) = min{u>v : u ∈ B},

T (λ)
π (V ) = (1− λ)

∞∑
m=0

λ
m

{
m∑

k=0

(αPo
π)k rπ + (αPo

π)m+1V + α

m∑
k=0

(αPo
π)kσUπ (T (m−k)

π V )

}

We propose an “approximate” robust TD(λ) operator:

T̃ (λ)
π (V ) = (1− λ)

∞∑
m=0

λ
m

{
m∑

k=0

(αPo
π)k rπ + (αPo

π)m+1V + α

m∑
k=0

(αPo
π)kσUπ (���T (m−k)

π V )

}

This is a tractable and “good” approximation

We still have T̃
(λ)
π (Vπ) = Vπ !

For the RL setting:

T̃ (λ)
π (V ) = (1− λ)

∞∑
m=0

λ
m

{
m∑

k=0

(αPo
π)k rπ + (αPo

π)m+1V + α
m∑

k=0

(αPo
π)kσÛπ (���T (m−k)

π V )

}
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RLSPI Algorithm gist

Π does a “projection operation” onto the subspace spanned by the columns of Φ
under a weighted norm described by the steady state distribution of Po

πk

Robust Least Squares Policy Iteration (RLSPI) Algorithm

1 (Initialization) Initial policy π0 and weights w0

2 (Robust Least Squares Policy Evaluation (RLSPE)) Given the policy πk ,
solve for the approximate robust value function V̄πk

= Φwπk
using

Φwπk
= ΠT̃ (λ)

πk
Φwπk

3 (Robust Least Squares Policy Iteration (RLSPI)) Obtain a new policy

πk+1 = arg max
π

T̃ (λ)
π (Φwπk

)

repeat...
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RLSPI Algorithm

RLSPE from Stochastic Approximation theory

wt+1= wt + γtB
−1
t (Atwt + bt + Ct(wt)), where,

At =
1

t + 1

t∑
τ=0

zτ (αφ>(sτ+1)− φ>(sτ )), Bt =
1

t + 1

t∑
τ=0

φ(sτ )φ>(sτ ),

Ct(w) =
α

t + 1

t∑
τ=0

zτ σÛsτ ,π(sτ )
(Φw),

bt =
1

t + 1

t∑
τ=0

zτ r(sτ , π(sτ )), zτ =
τ∑

m=0

(αλ)τ−m
φ(sm)

RLSPI

πk+1 = arg max
π

T̃ (λ)
π (Φwk+1)

φ(s)→φ(s,a)−→ πk+1(.) = arg max
a∈A

φ(., a)>wπk
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RLSPI Algorithm

Pseudocode
1: Initialization: Policy evaluation weights error ε0, initial policy π0.
2: for k = 0 . . .K do
3: Initialize the policy weight vector w0. Initialize time step t ← 0.
4: repeat
5: Observe st , take at = πk(st), observe rt and st+1.
6: Update the weight vector wt

7: t ← t + 1
8: until ‖wt − wt−1‖2 < ε0

9: wπk
← wt

10: Update the policy πk+1(s) = arg maxa∈A φ(s, a)>wπk

11: end for
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Convergence of RLSPE: Results

Assumptions

(i) αPs,π(s)(s
′) ≤ βPo

s,π(s)(s
′) (ii) steady-state distribution d > 0 on Po

π

Define

ρ = distance(U , Û), an Unknown uncertainty error
c(α, β, ρ, λ) = (β(2− λ) + ρα)/(1− βλ)

Theorem ( Convergence of RLSPE for policy π )

Let Vπ be the true robust value function for policy π. Let Φwπ be the
approximate robust value function for policy π.

if c(α, β, ρ, λ) < 1, ∃ ! wπ for Φwπ = ΠT̃
(λ)
π (Φwπ)

(Stochastic Approximation theory) wt converges to wπ w.p. 1.

Moreover,

‖Vπ − Φwπ‖d ≤ 1
1−c(α,β,ρ,λ)

(
‖Vπ − ΠVπ‖d + βρ‖Vπ‖d

1−βλ

)
.

Linear FA error ≤ Projection error + Unknown uncertainty error
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Convergence of RLSPI: Results

Assumptions

(i) maxπ ‖Vπ − ΠdπVπ‖dπ < δ (ii) dπ ≥ µ̄/C2 ≥ µH(π,Po)/C1C2

Theorem ( Asymptotic convergence of PI )

Let V ∗ be the optimal robust value function. {πk} policy sequence of algorithm.
Let Vπk

be the true robust value function for policy πk . Let ρ = 0.

lim sup
k→∞

‖V ∗ − Vπk
‖µ ≤

2
√
C1C2 c(α, β, 0, λ)

(1− c(α, β, 0, λ))3
δ.

For some large enough k, Vπk
is ε-optimal w.r.t V ∗ under ‖.‖µ
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RLSPI Simulation Performance

We train our algorithm on MountainCarContinuous environment in OpenAI
Gym with default parameters

We test for robustness by changing the power parameter
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RLSPI Simulation Performance

We train our algorithm on CartPole environment in OpenAI Gym with default
parameters

We test for robustness by changing the force-magnitude parameter
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Thank you for listening!
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