Robust Reinforcement Learning using Least Squares Policy Iteration with Provable Performance Guarantees

Kishan Panaganti and Dileep Kalathil

Short Presentation at ICML 2021

July 2021

イロト イヨト イヨト

Motivation - Why should we be robust?

This paper: Robustness for model parameter uncertainty

https://en.wikipedia.org/wiki/Robot, https://en.wikipedia.org/wiki/Planet

July 2021 2 / 18

Main "informal" question

Question: Can we promise robustness when the "test" model is \overline{P} ?

July 2021 3 / 18

Main "informal" question

Question: Can we promise robustness when the "test" model is \overline{P} ?

We develop a model-free RL algorithm that learns a policy that is robust against parameter uncertainty

We provide provable convergence guarantees for the proposed model-free RL algorithm (Policy Evaluation + Policy Iteration)

We verify the algorithm in simulation on OpenAlGym (Brockman et al., 2016)

(日) (同) (日) (日)

Robust MDP = $\{S, A, P, r\}$ This paperLet $\mathcal{P} = P^{\circ} + \mathcal{U}, \mathcal{U}$ is the parameter uncertainty set.
[indexed by (s,a)] $P^{\circ} \in \mathcal{P}$

< □ > < □ > < □ > < □ > < □ >

States S, actions A, rewards r are known

Robust MDP = $\{S, A, P, r\}$ This paperLet $\mathcal{P} = P^{\circ} + \mathcal{U}, \mathcal{U}$ is the parameter uncertainty set.[indexed by (s,a)] $P^{\circ} \in \mathcal{P}$ States S, actions A, rewards r are known

イロト イヨト イヨト イヨト

Robust MDP objective

 $\max_{\pi} \min_{P \in \mathcal{P}} \mathbb{E}_{P} \left[\sum_{t=0}^{\infty} \alpha^{t} r(s_{t}, \pi(s_{t})) \right], \qquad 0 < \alpha < 1$

Find policy that performs best under the worst model.

July 2021 4 / 18

Dynamic Programming for Robust MDP

• Robust policy evaluation for fixed policy π . Robust value function: $V_{\pi}(s) = \min_{P \in \mathcal{P}} \mathbb{E}_{P}[\sum_{t=0}^{\infty} \alpha^{t} r(s_{t}, \pi(s_{t})) \mid s_{0} = s].$

Robust Bellman operator for Robust PE

$$T_{\pi}(V_{\pi}(s)) = r(s,\pi(s)) + \alpha \min_{P \in \mathcal{P}} \sum_{s'} P_{s,\pi(s)}(s') V_{\pi}(s')$$

• Optimal robust policy and value: $\pi^* = \arg \max_{\pi} V_{\pi}$ and $V^* = \max_{\pi} V_{\pi}$

Dynamic Programming for Robust MDP

• Robust policy evaluation for fixed policy π . Robust value function: $V_{\pi}(s) = \min_{P \in \mathcal{P}} \mathbb{E}_{P}[\sum_{t=0}^{\infty} \alpha^{t} r(s_{t}, \pi(s_{t})) \mid s_{0} = s].$

Robust Bellman operator for Robust PE

$$T_{\pi}(V_{\pi}(s)) = r(s,\pi(s)) + \alpha \min_{P \in \mathcal{P}} \sum_{s'} P_{s,\pi(s)}(s') V_{\pi}(s')$$

- Optimal robust policy and value: $\pi^* = \arg \max_{\pi} V_{\pi}$ and $V^* = \max_{\pi} V_{\pi}$
- Hard problem because of min_{P∈P}
- **Question**: How do we compute V^* and π^* ?

Dynamic Programming for Robust MDP

• Robust policy evaluation for fixed policy π . Robust value function: $V_{\pi}(s) = \min_{P \in \mathcal{P}} \mathbb{E}_{P}[\sum_{t=0}^{\infty} \alpha^{t} r(s_{t}, \pi(s_{t})) \mid s_{0} = s].$

Robust Bellman operator for Robust PE

$$T_{\pi}(V_{\pi}(s)) = r(s,\pi(s)) + \alpha \min_{P \in \mathcal{P}} \sum_{s'} P_{s,\pi(s)}(s') V_{\pi}(s')$$

- Optimal robust policy and value: $\pi^* = \arg \max_{\pi} V_{\pi}$ and $V^* = \max_{\pi} V_{\pi}$
- Hard problem because of min_{P∈P}
- **Question**: How do we compute V^* and π^* ?
- Solved by *Robust policy iteration* (Iyengar, 2005), *Robust value iteration* (Nilim and El Ghaoui, 2005)

• Solved by Robust policy iteration (lyengar, 2005)

- Solved by Robust policy iteration (lyengar, 2005)
- Under "rectangularity" condition (uncorrelated uncertainties across (s,a)),

- Solved by Robust policy iteration (lyengar, 2005)
- Under "rectangularity" condition (*uncorrelated uncertainties across* (*s*,*a*)), it suffices to consider stationary control policies **and** stationary nature uncertain models

- Solved by Robust policy iteration (lyengar, 2005)
- Under "rectangularity" condition (*uncorrelated uncertainties across* (*s*,*a*)), it suffices to consider stationary control policies **and** stationary nature uncertain models
- T_{π} is a contraction in sup norm and V_{π} is its unique fixed point.

- Solved by Robust policy iteration (lyengar, 2005)
- Under "rectangularity" condition (*uncorrelated uncertainties across* (*s*,*a*)), it suffices to consider stationary control policies **and** stationary nature uncertain models
- \mathcal{T}_{π} is a contraction in sup norm and V_{π} is its unique fixed point. Solved by iterating

$$V_{k+1}=T_{\pi}(V_k)$$

- Solved by Robust policy iteration (lyengar, 2005)
- Under "rectangularity" condition (*uncorrelated uncertainties across* (*s*,*a*)), it suffices to consider stationary control policies **and** stationary nature uncertain models
- \mathcal{T}_{π} is a contraction in sup norm and V_{π} is its unique fixed point. Solved by iterating

$$V_{k+1}=T_{\pi}(V_k)$$

• Define $T(V) = \max_{\pi} T_{\pi}(V)$.

- Solved by Robust policy iteration (lyengar, 2005)
- Under "rectangularity" condition (*uncorrelated uncertainties across* (*s*,*a*)), it suffices to consider stationary control policies **and** stationary nature uncertain models
- \mathcal{T}_{π} is a contraction in sup norm and V_{π} is its unique fixed point. Solved by iterating

$$V_{k+1}=T_{\pi}(V_k)$$

• Define $T(V) = \max_{\pi} T_{\pi}(V)$. T is a contraction in sup norm and V^{*} is its unique fixed point

イロン イ団 とく ヨン イヨン

- Solved by Robust policy iteration (lyengar, 2005)
- Under "rectangularity" condition (*uncorrelated uncertainties across* (*s*,*a*)), it suffices to consider stationary control policies **and** stationary nature uncertain models
- \mathcal{T}_{π} is a contraction in sup norm and V_{π} is its unique fixed point. Solved by iterating

$$V_{k+1}=T_{\pi}(V_k)$$

- Define $T(V) = \max_{\pi} T_{\pi}(V)$. T is a contraction in sup norm and V^{*} is its unique fixed point
- Optimal robust (stationary) policy π^* satisfies

$$\pi^* = \arg \max_{\pi} T_{\pi}(V^*)$$

- Solved by Robust policy iteration (lyengar, 2005)
- Under "rectangularity" condition (*uncorrelated uncertainties across* (*s*,*a*)), it suffices to consider stationary control policies **and** stationary nature uncertain models
- \mathcal{T}_{π} is a contraction in sup norm and V_{π} is its unique fixed point. Solved by iterating

$$V_{k+1}=T_{\pi}(V_k)$$

- Define $T(V) = \max_{\pi} T_{\pi}(V)$. T is a contraction in sup norm and V^{*} is its unique fixed point
- Optimal robust (stationary) policy π^* satisfies

$$\pi^* = rg\max_{\pi} T_{\pi}(V^*)$$

• Also solved by Robust value iteration (Nilim and El Ghaoui, 2005)

• Solved by Robust value iteration (Nilim and El Ghaoui, 2005)

- Solved by Robust value iteration (Nilim and El Ghaoui, 2005)
- Under "rectangularity" condition (uncorrelated uncertainties across (s,a)),

- Solved by Robust value iteration (Nilim and El Ghaoui, 2005)
- Under "rectangularity" condition (*uncorrelated uncertainties across* (*s*,*a*)), it suffices to consider stationary control policies **and** stationary nature uncertain models
- Optimal robust value function V^* ,

- Solved by Robust value iteration (Nilim and El Ghaoui, 2005)
- Under "rectangularity" condition (*uncorrelated uncertainties across* (*s*,*a*)), it suffices to consider stationary control policies **and** stationary nature uncertain models
- Optimal robust value function V^* , solved by iterating

$$V_{k+1}(s) = \max_{a} (r(s,a) + \alpha \min_{P \in \mathcal{P}} \sum_{s'} P_{s,a}(s') V_k(s'))$$

• Optimal robust (stationary) policy π^* ,

- Solved by Robust value iteration (Nilim and El Ghaoui, 2005)
- Under "rectangularity" condition (*uncorrelated uncertainties across* (*s*,*a*)), it suffices to consider stationary control policies **and** stationary nature uncertain models
- Optimal robust value function V^* , solved by iterating

$$V_{k+1}(s) = \max_{a} (r(s, a) + \alpha \min_{P \in \mathcal{P}} \sum_{s'} P_{s,a}(s') V_k(s'))$$

• Optimal robust (stationary) policy π^* , solved by

$$a^*(s) = \arg \max_{a} (r(s, a) + \alpha \min_{P \in \mathcal{P}} \sum_{s'} P_{s,a}(s') V^*(s'))$$

- Solved by Robust value iteration (Nilim and El Ghaoui, 2005)
- Under "rectangularity" condition (*uncorrelated uncertainties across* (*s*,*a*)), it suffices to consider stationary control policies **and** stationary nature uncertain models
- Optimal robust value function V^* , solved by iterating

$$V_{k+1}(s) = \max_{a} (r(s, a) + \alpha \min_{P \in \mathcal{P}} \sum_{s'} P_{s,a}(s') V_k(s'))$$

• Optimal robust (stationary) policy π^* , solved by

$$a^*(s) = \arg \max_{a} (r(s, a) + \alpha \min_{P \in \mathcal{P}} \sum_{s'} P_{s,a}(s') V^*(s'))$$

• Also solved by Robust policy iteration (lyengar, 2005)

Main goal: Find robust optimal policy π^* when \mathcal{P} is unknown.

Main goal: Find robust optimal policy π^* when \mathcal{P} is unknown.

Challenge: Recall $\mathcal{P} = P^o + \mathcal{U}$. When P^o is known, we can construct \mathcal{U} such that \mathcal{P} is a valid collection of probability vectors.

Robust RL - Main Challenges

July 2021 8 / 18

Main goal: Find robust optimal policy π^* when \mathcal{P} is unknown.

Challenge: Recall $\mathcal{P} = P^o + \mathcal{U}$. When P^o is known, we can construct \mathcal{U} such that \mathcal{P} is a valid collection of probability vectors.

Example (Spherical uncertainty set)

 $\mathcal{U} := \{x \mid \|x\|_2 \leq 1, \sum_{s \in \mathcal{S}} x_s = 0, -P^o(s') \leq x_{s'} \leq 1 - P^o(s'), \forall s' \in \mathcal{S}\}$

But, we do not know P^{o} . So, we approximate the uncertainty set as $\hat{\mathcal{U}}$.

July 2021 8 / 18

Main goal: Find robust optimal policy π^* when \mathcal{P} is unknown.

Challenge: Recall $\mathcal{P} = P^{o} + \mathcal{U}$. When P^{o} is known, we can construct \mathcal{U} such that \mathcal{P} is a valid collection of probability vectors.

Example (Spherical uncertainty set)

 $\mathcal{U} := \{x \mid \|x\|_2 \leq 1, \sum_{s \in \mathcal{S}} x_s = 0, -P^o(s') \leq x_{s'} \leq 1 - P^o(s'), \forall s' \in \mathcal{S}\}$

But, we do not know P^{o} . So, we approximate the uncertainty set as $\widehat{\mathcal{U}}$.

Example (Spherical "approximate" uncertainty set)

 $\widehat{\mathcal{U}} := \{x \mid \|x\|_2 \le 1, \sum_{s \in \mathcal{S}} x_s = 0\}$

Challenge: We only get samples from P^o , and not from every $P \in \mathcal{P}$.

• Additional challenge: Large scale problems incur "curse of dimensionality"

- Additional challenge: Large scale problems incur "curse of dimensionality"
- Two totems to address this curse

This paper

- Additional challenge: Large scale problems incur "curse of dimensionality"
- Two totems to address this curse

This paper

Linear function approximation for $V_{\pi}(s)$

Given state-dependent features $\phi(s) \in \mathbb{R}^L, L << |\mathcal{S}|$:

 $\bar{V}_{\pi}(s) = \phi(s)^{\top} w_{\pi}$

イロト イヨト イヨト イヨト

generalization capabilities (Tamar et al., 2014; Lim and Autef, 2019; Panaganti and Kalathil, 2020)

Robust $\mathsf{TD}(\lambda)$ operator

$$T^{(\lambda)}_{\pi}(V) = (1-\lambda) \sum_{m=0}^{\infty} \lambda^m T^{m+1}_{\pi}(V), \qquad \lambda \in [0,1)$$

multi-step boosting (Van Seijen et al., 2016; Altahhan, 2020; Panaganti and Kalathil, 2020)

July 2021 9 / 18

• $T_{\pi}^{(\lambda)}$ is nonlinear and very difficult to estimate Denoting $\sigma_{\mathcal{B}}(v) = \min\{u^{\top}v : u \in \mathcal{B}\},\$

$$T_{\pi}^{(\lambda)}(V) = (1-\lambda) \sum_{m=0}^{\infty} \lambda^{m} \left\{ \sum_{k=0}^{m} (\alpha P_{\pi}^{\circ})^{k} r_{\pi} + (\alpha P_{\pi}^{\circ})^{m+1} V + \alpha \sum_{k=0}^{m} (\alpha P_{\pi}^{\circ})^{k} \sigma_{\mathcal{U}_{\pi}}(T_{\pi}^{(m-k)}V) \right\}$$

•
$$T_{\pi}^{(\lambda)}$$
 is nonlinear and very difficult to estimate
Denoting $\sigma_{\mathcal{B}}(v) = \min\{u^{\top}v : u \in \mathcal{B}\},\$

$$T_{\pi}^{(\lambda)}(V) = (1-\lambda) \sum_{m=0}^{\infty} \lambda^{m} \left\{ \sum_{k=0}^{m} (\alpha P_{\pi}^{o})^{k} r_{\pi} + (\alpha P_{\pi}^{o})^{m+1} V + \alpha \sum_{k=0}^{m} (\alpha P_{\pi}^{o})^{k} \sigma_{\mathcal{U}\pi} (T_{\pi}^{(m-k)} V) \right\}$$

• We propose an "approximate" robust $\mathsf{TD}(\lambda)$ operator:

$$\widetilde{T}_{\pi}^{(\lambda)}(V) = (1-\lambda) \sum_{m=0}^{\infty} \lambda^{m} \left\{ \sum_{k=0}^{m} (\alpha P_{\pi}^{\circ})^{k} r_{\pi} + (\alpha P_{\pi}^{\circ})^{m+1} V + \alpha \sum_{k=0}^{m} (\alpha P_{\pi}^{\circ})^{k} \sigma_{\mathcal{U}_{\pi}}(\mathcal{I}_{\pi}^{(m-k)}V) \right\}$$

• This is a tractable and "good" approximation

•
$$T_{\pi}^{(\lambda)}$$
 is nonlinear and very difficult to estimate
Denoting $\sigma_{\mathcal{B}}(v) = \min\{u^{\top}v : u \in \mathcal{B}\},\$

$$T_{\pi}^{(\lambda)}(V) = (1-\lambda) \sum_{m=0}^{\infty} \lambda^{m} \left\{ \sum_{k=0}^{m} (\alpha P_{\pi}^{o})^{k} r_{\pi} + (\alpha P_{\pi}^{o})^{m+1} V + \alpha \sum_{k=0}^{m} (\alpha P_{\pi}^{o})^{k} \sigma_{\mathcal{U}\pi}(T_{\pi}^{(m-k)} V) \right\}$$

• We propose an "approximate" robust $\mathsf{TD}(\lambda)$ operator:

$$\widetilde{T}_{\pi}^{(\lambda)}(V) = (1-\lambda) \sum_{m=0}^{\infty} \lambda^{m} \left\{ \sum_{k=0}^{m} (\alpha P_{\pi}^{o})^{k} r_{\pi} + (\alpha P_{\pi}^{o})^{m+1} V + \alpha \sum_{k=0}^{m} (\alpha P_{\pi}^{o})^{k} \sigma_{\mathcal{U}\pi} (\mathcal{I}_{\pi}^{(m-k)} V) \right\}$$

- This is a tractable and "good" approximation
- We still have $\widetilde{T}^{(\lambda)}_{\pi}(V_{\pi}) = V_{\pi}$!

• $T_{\pi}^{(\lambda)}$ is nonlinear and very difficult to estimate Denoting $\sigma_{\mathcal{B}}(v) = \min\{u^{\top}v : u \in \mathcal{B}\},\$

$$T_{\pi}^{(\lambda)}(V) = (1-\lambda) \sum_{m=0}^{\infty} \lambda^{m} \left\{ \sum_{k=0}^{m} (\alpha P_{\pi}^{o})^{k} r_{\pi} + (\alpha P_{\pi}^{o})^{m+1} V + \alpha \sum_{k=0}^{m} (\alpha P_{\pi}^{o})^{k} \sigma_{\mathcal{U}\pi}(T_{\pi}^{(m-k)} V) \right\}$$

• We propose an "approximate" robust $\mathsf{TD}(\lambda)$ operator:

$$\widetilde{T}_{\pi}^{(\lambda)}(V) = (1-\lambda) \sum_{m=0}^{\infty} \lambda^{m} \left\{ \sum_{k=0}^{m} (\alpha P_{\pi}^{o})^{k} r_{\pi} + (\alpha P_{\pi}^{o})^{m+1} V + \alpha \sum_{k=0}^{m} (\alpha P_{\pi}^{o})^{k} \sigma_{\mathcal{U}_{\pi}}(\mathcal{I}_{\pi}^{(m-k)}V) \right\}$$

- This is a tractable and "good" approximation
- We still have $\widetilde{T}^{(\lambda)}_{\pi}(V_{\pi}) = V_{\pi}$!
- For the RL setting:

$$\widetilde{T}_{\pi}^{(\lambda)}(V) = (1-\lambda) \sum_{m=0}^{\infty} \lambda^{m} \left\{ \sum_{k=0}^{m} (\alpha P_{\pi}^{o})^{k} r_{\pi} + (\alpha P_{\pi}^{o})^{m+1} V + \alpha \sum_{k=0}^{m} (\alpha P_{\pi}^{o})^{k} \sigma_{\widehat{\mathcal{U}}_{\pi}}(\mathcal{I}_{\pi}^{(m-k)}V) \right\}$$

 Π does a "projection operation" onto the subspace spanned by the columns of Φ under a weighted norm described by the steady state distribution of $P^o_{\pi_k}$

Robust Least Squares Policy Iteration (RLSPI) Algorithm

- **(Initialization)** Initial policy π_0 and weights w_0
- **(Robust Least Squares Policy Evaluation (RLSPE))** Given the policy π_k , solve for the approximate robust value function $\bar{V}_{\pi_k} = \Phi w_{\pi_k}$ using

$$\Phi w_{\pi_k} = \prod \widetilde{T}_{\pi_k}^{(\lambda)} \Phi w_{\pi_k}$$

(Robust Least Squares Policy Iteration (RLSPI)) Obtain a new policy

$$\pi_{k+1} = \arg \max_{\pi} \widetilde{T}_{\pi}^{(\lambda)}(\Phi w_{\pi_k})$$
repeat...

RLSPE from Stochastic Approximation theory

$$\begin{split} w_{t+1} &= w_t + \gamma_t B_t^{-1} (A_t w_t + b_t + C_t(w_t)), & \text{where,} \\ A_t &= \frac{1}{t+1} \sum_{\tau=0}^t z_\tau \; (\alpha \phi^\top (s_{\tau+1}) - \phi^\top (s_{\tau})), & B_t &= \frac{1}{t+1} \sum_{\tau=0}^t \phi(s_\tau) \phi^\top (s_\tau), \\ C_t(w) &= \frac{\alpha}{t+1} \sum_{\tau=0}^t z_\tau \; \sigma_{\widehat{\mathcal{U}}_{s_\tau, \pi(s_\tau)}}(\Phi w), \\ b_t &= \frac{1}{t+1} \sum_{\tau=0}^t z_\tau r(s_\tau, \pi(s_\tau)), & z_\tau &= \sum_{m=0}^\tau (\alpha \lambda)^{\tau-m} \phi(s_m) \end{split}$$

RLSPI

$$\pi_{k+1} = \arg \max_{\pi} \widetilde{T}_{\pi}^{(\lambda)}(\Phi w_{k+1}) \stackrel{\phi(s) \to \phi(s, a)}{\longrightarrow} \pi_{k+1}(.) = \arg \max_{a \in \mathcal{A}} \phi(., a)^{\top} w_{\pi_k}$$

イロン イヨン イヨン イヨン 三日

Pseudocode

- 1: Initialization: Policy evaluation weights error ϵ_0 , initial policy π_0 .
- 2: for k = 0 ... K do
- 3: Initialize the policy weight vector w_0 . Initialize time step $t \leftarrow 0$.
- 4: repeat
- 5: Observe s_t , take $a_t = \pi_k(s_t)$, observe r_t and s_{t+1} .
- 6: Update the weight vector w_t
- 7: $t \leftarrow t+1$
- 8: **until** $||w_t w_{t-1}||_2 < \epsilon_0$
- 9: $W_{\pi_k} \leftarrow W_t$
- 10: Update the policy $\pi_{k+1}(s) = \arg \max_{a \in \mathcal{A}} \phi(s, a)^\top w_{\pi_k}$
- 11: end for

Convergence of RLSPE: Results

Assumptions

(i) $\alpha P_{s,\pi(s)}(s') \leq \beta P_{s,\pi(s)}^o(s')$ (ii) steady-state distribution d > 0 on P_{π}^o

Define

$$\rho = \mathsf{distance}(\mathcal{U}, \widehat{\mathcal{U}}), \text{ an Unknown uncertainty error} \\ c(\alpha, \beta, \rho, \lambda) = (\beta(2 - \lambda) + \rho\alpha)/(1 - \beta\lambda)$$

Theorem (Convergence of RLSPE for policy π)

Let V_{π} be the true robust value function for policy π . Let Φw_{π} be the approximate robust value function for policy π .

- if $c(\alpha, \beta, \rho, \lambda) < 1$, $\exists ! w_{\pi}$ for $\Phi w_{\pi} = \prod \widetilde{T}_{\pi}^{(\lambda)}(\Phi w_{\pi})$
- (Stochastic Approximation theory) w_t converges to w_{π} w.p. 1.

Convergence of RLSPE: Results

Assumptions

(i) $\alpha P_{s,\pi(s)}(s') \leq \beta P_{s,\pi(s)}^o(s')$ (ii) steady-state distribution d > 0 on P_{π}^o

Define

$$\rho = \mathsf{distance}(\mathcal{U}, \widehat{\mathcal{U}}), \text{ an Unknown uncertainty error} \\ c(\alpha, \beta, \rho, \lambda) = (\beta(2 - \lambda) + \rho\alpha)/(1 - \beta\lambda)$$

Theorem (Convergence of RLSPE for policy π)

Let V_{π} be the true robust value function for policy π . Let Φw_{π} be the approximate robust value function for policy π .

- if $c(\alpha, \beta, \rho, \lambda) < 1$, $\exists ! w_{\pi}$ for $\Phi w_{\pi} = \prod \widetilde{T}_{\pi}^{(\lambda)}(\Phi w_{\pi})$
- (Stochastic Approximation theory) w_t converges to w_{π} w.p. 1. Moreover,

$$\|V_{\pi} - \Phi w_{\pi}\|_{d} \leq \frac{1}{1 - c(\alpha, \beta, \rho, \lambda)} \left(\|V_{\pi} - \prod V_{\pi}\|_{d} + \frac{\beta \rho \|V_{\pi}\|_{d}}{1 - \beta \lambda} \right).$$

Linear FA error \leq Projection error + Unknown uncertainty error

Assumptions

(i) $\max_{\pi} \|V_{\pi} - \Pi_{d_{\pi}} V_{\pi}\|_{d_{\pi}} < \delta$

(ii) $d_{\pi} \geq \bar{\mu}/C_2 \geq \mu H(\pi, P^o)/C_1C_2$

< □ > < □ > < □ > < □ > < □ >

Theorem (Asymptotic convergence of PI)

Let V^* be the optimal robust value function. $\{\pi_k\}$ policy sequence of algorithm. Let V_{π_k} be the true robust value function for policy π_k . Let $\rho = 0$.

$$\limsup_{k\to\infty} \|V^* - V_{\pi_k}\|_{\mu} \leq \frac{2\sqrt{C_1C_2} \ c(\alpha,\beta,0,\lambda)}{(1-c(\alpha,\beta,0,\lambda))^3} \ \delta.$$

Assumptions

(i) $\max_{\pi} \|V_{\pi} - \Pi_{d_{\pi}} V_{\pi}\|_{d_{\pi}} < \delta$

(ii) $d_{\pi} \geq \bar{\mu}/C_2 \geq \mu H(\pi, P^o)/C_1C_2$

イロト イヨト イヨト イヨト

Theorem (Asymptotic convergence of PI)

Let V^* be the optimal robust value function. $\{\pi_k\}$ policy sequence of algorithm. Let V_{π_k} be the true robust value function for policy π_k . Let $\rho = 0$.

$$\limsup_{k\to\infty} \|V^* - V_{\pi_k}\|_{\mu} \leq \frac{2\sqrt{C_1C_2} \ c(\alpha,\beta,0,\lambda)}{(1-c(\alpha,\beta,0,\lambda))^3} \ \delta.$$

For some large enough k, V_{π_k} is ϵ -optimal w.r.t V^{*} under $\|.\|_{\mu}$

RLSPI Simulation Performance

- We train our algorithm on MountainCarContinuous environment in OpenAI Gym with default parameters
- We test for robustness by changing the power parameter

イロト イヨト イヨト イヨト

Soft-Robust DDPG (I	Derman et al., 2018)
---------------------	----------------------

Kishan Panaganti (TAMU)

RLSPI Simulation Performance

- We train our algorithm on CartPole environment in OpenAI Gym with default parameters
- We test for robustness by changing the force-magnitude parameter

Soft-Robust	DQN	(Derman	et	al.,	2018)
-------------	-----	---------	----	------	------	---

Kishan Panaganti (TAMU)

Thank you for listening!

References I

lyengar, Garud N (2005). "Robust dynamic programming". In: Mathematics of Operations Research 30.2, pp. 257-280.

- Nilim, Arnab and Laurent El Ghaoui (2005). "Robust control of Markov decision processes with uncertain transition matrices". In: Operations Research 53.5, pp. 780–798.
- Tamar, Aviv, Shie Mannor, and Huan Xu (2014). "Scaling up robust MDPs using function approximation". In: International Conference on Machine Learning, pp. 181–189.
- Brockman, Greg, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba (2016). "Openai gym". In: arXiv preprint arXiv:1606.01540.
- Van Seijen, Harm, A Rupam Mahmood, Patrick M Pilarski, Marlos C Machado, and Richard S Sutton (2016). "True online temporal-difference learning". In: The Journal of Machine Learning Research 17.1, pp. 5057–5096.
- Derman, Esther, Daniel J Mankowitz, Timothy A Mann, and Shie Mannor (2018). "Soft-robust actor-critic policy-gradient". In: AUAI press for Association for Uncertainty in Artificial Intelligence, pp. 208–218.
- Lim, Shiau Hong and Arnaud Autef (2019). "Kernel-based reinforcement learning in robust markov decision processes". In: International Conference on Machine Learning, pp. 3973–3981.
- Altahhan, Abdulrahman (2020). "True Online TD (λ)-Replay An Efficient Model-free Planning with Full Replay". In: 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1–7.

Panaganti, Kishan and Dileep Kalathil (2020). "Model-Free Robust Reinforcement Learning with Linear Function Approximation". In: arXiv preprint arXiv:2006.11608.

イロト イヨト イヨト