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Motivation - Why should we be robust?

This paper: Robustness for model parameter uncertainty

https:/ /en.wikipedia.org /wiki/Robot, https://en.wikipedia.org/wiki/Planet
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Main “informal” question

I *po
P

Question: Can we promise robustness when the “test’” model is P ?
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Main “informal” question

Question: Can we promise robustness when the “test” model is P ?
We develop a model-free RL algorithm that learns a policy that is robust against
parameter uncertainty

We provide provable convergence guarantees for the proposed model-free RL
algorithm (Policy Evaluation + Policy Iteration)

We verify the algorithm in simulation on OpenAlGym (Brockman et al., 2016)

O = - = = DQAC
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Robust Classical MDP Formulation

Learner
(“Agent”)

Reinforcement signal

Robust MDP = {S, A, P, r} This paper

ndcatonf sates Let P = P° +U, U is the parameter uncertainty set.
:P,_f_,\ [indexed by (s,a)] P epP

Environment
("Madel”)

States S, actions A, rewards r are known
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Robust Classical MDP Formulation

Robust MDP = {S, A, P, r} This paper

Reinforcement signal

Indication of states

Let P = P° +U, U is the parameter uncertainty set.
/3[_,,_.7_, [indexed by (s,a)] PeeP

/ / States S, actions A, rewards r are known

Robust MDP objective
max, minpep Ep[ Do alr(s:, m(s:)) ], 0<ax<l J

Find policy that performs best under the worst model.

Environment
("Madel”)
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Dynamic Programming for Robust MDP

@ Robust policy evaluation for fixed policy w. Robust value function:
V(s) = minpepEp[Y oo tr(se, m(st)) | so = s].

Robust Bellman operator for Robust PE

T?T(Vﬂ'(s)) = I’(S,?T(S)) +a Fmelgz Ps,ﬂ(s)(sl)vn(sl)

@ Optimal robust policy and value: 7* = arg max, V; and V* = max, V;
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Dynamic Programming for Robust MDP

@ Robust policy evaluation for fixed policy w. Robust value function:
V(s) = minpepEp[Y oo tr(se, m(st)) | so = s].

Robust Bellman operator for Robust PE

Tﬂr(vrr(s)) = I’(S,?T(S)) +a g‘elgz Ps,ﬂ'(s)(sl)vrr(sl)

@ Optimal robust policy and value: 7* = arg max, V; and V* = max, V;
@ Hard problem because of minpep
@ Question: How do we compute V* and 7*7
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Dynamic Programming for Robust MDP

@ Robust policy evaluation for fixed policy w. Robust value function:
V(s) = minpepEp[Y oo tr(se, m(st)) | so = s].

Robust Bellman operator for Robust PE

Ta(Va(s)) = r(s, w(s)) + & min Y Pore)(s)Va(s)

@ Optimal robust policy and value: 7* = arg max, V; and V* = max, V;
@ Hard problem because of minpep
@ Question: How do we compute V* and 7*7

@ Solved by Robust policy iteration (lyengar, 2005), Robust value iteration
(Nilim and El Ghaoui, 2005)

=] F = = =
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DP for Robust MDP

@ Solved by Robust policy iteration (lyengar, 2005)
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DP for Robust MDP
@ Solved by Robust policy iteration (lyengar, 2005)

o Under “rectangularity” condition (uncorrelated uncertainties across (s,a)),
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models

DP for Robust MDP
@ Solved by Robust policy iteration (lyengar, 2005)

@ Under “rectangularity” condition (uncorrelated uncertainties across (s,a)), it

suffices to consider stationary control policies and stationary nature uncertain
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DP for Robust MDP

@ Solved by Robust policy iteration (lyengar, 2005)

@ Under “rectangularity” condition (uncorrelated uncertainties across (s,a)), it

suffices to consider stationary control policies and stationary nature uncertain
models

@ T, is a contraction in sup norm and V. is its unique fixed point.
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DP for Robust MDP

@ Solved by Robust policy iteration (lyengar, 2005)

@ Under “rectangularity” condition (uncorrelated uncertainties across (s,a)), it

suffices to consider stationary control policies and stationary nature uncertain
models

@ T, is a contraction in sup norm and V, is its unique fixed point. Solved by
iterating

Vit = Tx(Vi)

ST = E z wace
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DP for Robust MDP

@ Solved by Robust policy iteration (lyengar, 2005)

@ Under “rectangularity” condition (uncorrelated uncertainties across (s,a)), it
suffices to consider stationary control policies and stationary nature uncertain
models

@ T, is a contraction in sup norm and V, is its unique fixed point. Solved by
iterating
Vigr = T(Vi)

o Define T(V) = max, T.(V).

wa
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DP for Robust MDP

@ Solved by Robust policy iteration (lyengar, 2005)

@ Under “rectangularity” condition (uncorrelated uncertainties across (s,a)), it
suffices to consider stationary control policies and stationary nature uncertain
models

@ T, is a contraction in sup norm and V, is its unique fixed point. Solved by
iterating
Vigr = T(Vi)

@ Define T(V) = max, T(V). T is a contraction in sup norm and V* is its
unique fixed point
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DP for Robust MDP

Solved by Robust policy iteration (lyengar, 2005)

@ Under “rectangularity” condition (uncorrelated uncertainties across (s,a)), it
suffices to consider stationary control policies and stationary nature uncertain
models

@ T, is a contraction in sup norm and V, is its unique fixed point. Solved by
iterating

Virr = To (V)

@ Define T(V) = max, T(V). T is a contraction in sup norm and V* is its
unique fixed point

@ Optimal robust (stationary) policy 7* satisfies

7 = argmax T, (V")
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DP for Robust MDP

Solved by Robust policy iteration (lyengar, 2005)

@ Under “rectangularity” condition (uncorrelated uncertainties across (s,a)), it
suffices to consider stationary control policies and stationary nature uncertain
models

@ T, is a contraction in sup norm and V, is its unique fixed point. Solved by
iterating
Vigr = T(Vi)

@ Define T(V) = max, T(V). T is a contraction in sup norm and V* is its
unique fixed point

@ Optimal robust (stationary) policy 7* satisfies

7 = argmax T, (V")

@ Also solved by Robust value iteration (Nilim and El Ghaoui, 2005)
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DP for Robust MDP

@ Solved by Robust value iteration (Nilim and El Ghaoui, 2005)

o Under “rectangularity” condition (uncorrelated uncertainties across (s,a)),
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DP for Robust MDP

@ Solved by Robust value iteration (Nilim and El Ghaoui, 2005)
models

@ Under “rectangularity” condition (uncorrelated uncertainties across (s,a)), it
suffices to consider stationary control policies and stationary nature uncertain
@ Optimal robust value function V*,

Kishan Panaganti (TAMU)

Robust Reinforcement Learning

= DAl
July 2021 7/18



DP for Robust MDP

@ Solved by Robust value iteration (Nilim and El Ghaoui, 2005)

o Under “rectangularity” condition (uncorrelated uncertainties across (s,a)), it
suffices to consider stationary control policies and stationary nature uncertain
models

@ Optimal robust value function V*, solved by iterating
Via(s) = max (r(s,a)+« Ir)nelgz Ps..(s ) Vi(s"))
s/

e Optimal robust (stationary) policy 7*,

wa
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DP for Robust MDP

@ Solved by Robust value iteration (Nilim and El Ghaoui, 2005)

o Under “rectangularity” condition (uncorrelated uncertainties across (s,a)), it
suffices to consider stationary control policies and stationary nature uncertain
models

@ Optimal robust value function V*, solved by iterating
Via(s) = max (r(s,a)+« Ir)nelgz Ps..(s ) Vi(s"))
s/

o Optimal robust (stationary) policy 7, solved by

* _ - INV/*(
a*(s) = arg max (r(s,a)+a Ir)nelgis; Ps .(s")V*(s"))
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DP for Robust MDP

@ Solved by Robust value iteration (Nilim and El Ghaoui, 2005)

o Under “rectangularity” condition (uncorrelated uncertainties across (s,a)), it
suffices to consider stationary control policies and stationary nature uncertain
models

@ Optimal robust value function V*, solved by iterating

Via(s) = max (r(s,a) + « Ir)nelgz P .(s') Vi(s"))

o Optimal robust (stationary) policy 7, solved by

* _ - INV/*(
a*(s) = arg max (r(s,a)+a Ir)nelgis; Ps .(s")V*(s"))

@ Also solved by Robust policy iteration (lyengar, 2005)
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Robust RL - Main Challenges

Main goal: Find robust optimal policy 7* when P is unknown.
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Robust RL - Main Challenges

Main goal: Find robust optimal policy 7* when P is unknown.

Challenge: Recall P = P° +U. When P? is known, we can construct U such that
‘P is a valid collection of probability vectors.

oy <3 =» «=» = Wac
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Robust RL - Main Challenges

Main goal: Find robust op*imn~! ~aliz =% wihan D g ynknown.

Challenge: Recall P = P° n, we can construct U such that
‘P is a valid collection of |

= (x| lIxllz € 1, Syes % = 0,—P°(s') < xy < 1— P°(s'), Vs € 5}

Example (Spherical ur J

[=) Il = = = Q>

Kishan Panaganti (TAMU) Robust Reinforcement Learning July 2021 8/18




Robust RL - Main Challenges

Main goal: Find robust optimal policy 7* when P is unknown.

Challenge: Recall P = P° +U. When P? is known, we can construct U such that
‘P is a valid collection of probability vectors.

Example (Spherical uncertainty set)
={x|lxll2 £1,3,c5% =0,—P°(s') < xy <1—P°(s"),Vs' € S}

But, we do not know P°. So, we approximate the uncertainty set as u.
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Robust RL - Main Challenges

Main goal: Find robust op*im2l ~~lice =% wihan D g ynknown.

Challenge: Recall P = P°
‘P is a valid collection of |

n, we can construct U such that

Example (Spherical ur
U= {x| ixll2 < 1 <1-P(s'),Vs' € S} J
But, we do not know P°. So, we approximate the uncertainty set as u.
Example (Spherical “approximate” uncertainty set)
U= {x | lIxll2 £ 1, Tes x = 0} J
O I = = T wace
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Robust RL - Main Challenges

Main goal: Find robust optimal policy 7* when P is unknown.

Challenge: Recall P = P° +U. When P? is known, we can construct U such that
‘P is a valid collection of probability vectors.

Example (Spherical uncertainty set) J

U= {x | lIxlls 1, S,es 3 =0, —P°(s') < xy < 1 PO(), Vs € S}

But, we do not know P°. So, we approximate the uncertainty set as u.

Example (Spherical “approximate” uncertainty set) J

U= {X | ||X||2 <1, ZSGS Xs = 0}

Challenge: We only get samples from P°, and not from every P € P.

] = = E = DQAC
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Key tools used in this paper

o Additional challenge: Large scale problems incur “curse of dimensionality”
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Key tools used in this paper

o Additional challenge: Large scale problems incur “curse of dimensionality”
@ Two totems to address this curse This paper
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Key tools used in this paper

o Additional challenge: Large scale problems incur “curse of dimensionality”
@ Two totems to address this curse

Linear function approximation for V.. (s)

This paper
Given state-dependent features ¢(s) € RE, L << [S|:

Vi(s) = é(s) " wr

generalization capabilities (Tamar et al., 2014; Lim and Autef, 2019; Panaganti and Kalathil, 2020)
Robust TD(\) operator

m=0
multi-step boosting

TOW) = (1 - X) 3 AT (V).

A€0,1)

(Van Seijen et al., 2016; Altahhan, 2020; Panaganti and Kalathil, 2020)
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Robust Policy Evaluation Challenge

° T7(T ) is nonlinear and very difficult to estimate
Denoting o5(v) = min{u'v : u € B},

k=0 k=0

TOW) =1 -0 A {i(apz)*rw (P2 4 a3 (0P o, (T V)}
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Robust Policy Evaluation Challenge

° T7(T ) is nonlinear and very difficult to estimate
Denoting o5(v) = min{u'v : u € B},

(>\)

k=0 k=0

=(1-2X) Z A" {zmj(apjr)kr,r +(@P)y™y 4 ai(ap;ar)ko_uw(-rfrm—k) V)}

o We propose an “approximate” robust TD(\) operator:

v

SNy {i“’”’;)k’" @RV 4 a3 (@) o, aﬁm/*v)}
k=0 o

@ This is a tractable and “good” approximation
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Robust Policy Evaluation Challenge

° T7(T ) is nonlinear and very difficult to estimate
Denoting o5(v) = min{u'v : u € B},
T (V) =(@1-2) Z A7 {Z(aP"

(aP°)"’+1v+aZ (@P2) oy, (TI"H) V)}
k=0 k=0

o We propose an “approximate” robust TD(\) operator

TO(V)=(1-2) Z A" {i(aPﬁ)m +(aP)™V + i(aPﬁ)k% WV)}
k=0 k=0

@ This is a tractable and “good” approximation

o We still have TN (V,) =V, |
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Robust Policy Evaluation Challenge

o TY is nonlinear and very difficult to estimate
Denoting o5(v) = min{u'v : u € B}

=(1-2X) Z A" {Z(aPo + (aP)™V + o i(ap;i)kauw(r;"’*“ V)}
k=0

TV

k=0

o We propose an “approximate” robust TD(\) operator

=(1-2X) Z AT {i(aP;)kr,r +

k=0

v

m
(@Py "’“V+a2(aP2)kouWWV)}
k=0

@ This is a tractable and “good” approximation
@ We still have T(’\)(

Vp) = Vil
@ For the RL setting:
TOW)y=@1-1) Z AT {Z(aPo) e 4 (@P2)™ 1V 4 az (aP2)
k=0

(J“"/*V)}
k=0
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RLSPI Algorithm gist

1 does a “projection operation” onto the subspace spanned by the columns of ¢
under a weighted norm described by the steady state distribution of P7,

Robust Least Squares Policy Iteration (RLSPI) Algorithm
@ (Initialization) Initial policy 7o and weights wg

© (Robust Least Squares Policy Evaluation (RLSPE)) Given the policy 7,
solve for the approximate robust value function V;, = ®w,, using

dw,, = ﬂTéf)CDWﬂ
@ (Robust Least Squares Policy Iteration (RLSPI)) Obtain a new policy

Tkl = arg max i(r’\)(dDw,rk)

repeat...

Kishan Panaganti (TAMU)
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Wep1= wr + 7B,

RLSPI Algorithm
RLSPE from Stochastic Approximation theory

(Atwt + b + Ce(wy)), where,
Ar = t+1 ZZT ag’ (s7+1) — o' (s7)), B: =
a t
G = —
t(w) :
Ttt1

T+ 1 Z‘i’(&')d’ (sr),

1 2_1: ™9, ey P
Zz,r(sT,ﬂ(sT))

RLSPI

Zr = Z(a)‘)f_m(b(sm)
m=0
Th41 = arg max i J(dwir)

s)—¢(s,a

—

Kishan Panaganti
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RLSPI Algorithm

Pseudocode
1: Initialization: Policy evaluation weights error €q, initial policy 7.
2: for k=0...K do
3 Initialize the policy weight vector wy. Initialize time step t + O.
4. repeat
5: Observe s;, take a; = mi(s;), observe ry and sy 1.
6 Update the weight vector w;
7 te=taedl
8 until ||Wt = Wt_1||2 < €
9 Wi, < Wi
10:  Update the policy 7y 1(s) = arg maxae 4 ¢(s,a) " wy,
11: end for

o = = = T 9Qg
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Convergence of RLSPE: Results

Assumptions

(i) aPs (s)(s') < BPS 1 (5)(S) (ii) steady-state distribution d > 0 on P2

T

v

Define

p = distance(U4, f), an Unknown uncertainty error

o B, 9, A) = (B(2 — A) + pa)/(1 — BA)

Theorem ( Convergence of RLSPE for policy 7 )

Let V. be the true robust value function for policy w. Let dw, be the
approximate robust value function for policy .

o ifc(a, B,p, A) <1, 31wy for dw, = NT (dwy)
@ (Stochastic Approximation theory) w; converges to w, w.p. 1.
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Convergence of RLSPE: Results

Assumptions

(i) aPs (s)(s') < BPS 1 (5)(S) (ii) steady-state distribution d > 0 on P2

T

v

Define

p = distance(U4, f), an Unknown uncertainty error

o B, 9, A) = (B(2 — A) + pa)/(1 — BA)

Theorem ( Convergence of RLSPE for policy 7 )

Let V. be the true robust value function for policy w. Let dw, be the
approximate robust value function for policy .

o ifc(a, B,p, A) <1, 31wy for dw, = NT (dwy)
@ (Stochastic Approximation theory) w; converges to w, w.p. 1. Moreover,

|| Vi
1Vx = Swlla < rgraiamamy (11 Ve — MVl + 25550 )

Linear FA error < Projection error + Unknown uncertainty error

v
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Convergence of RLSPI: Results

Assumptions
(I) maXg || V, — |-|dTr Vﬂ'”dw <é (II) d, > ,l_l,/Cz > /LH(’/T, PO)/Cl C2J

Theorem ( Asymptotic convergence of Pl )

Let V* be the optimal robust value function. {my} policy sequence of algorithm.
Let Vi, be the true robust value function for policy m,. Let p = 0.

2\/ C1C2 C(a, ﬁ, O, )\)
(1—c(a,$,0,X))3

limsup [[V* — V|, < d.
k—o00
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Convergence of RLSPI: Results

Assumptions
(I) maXg || V, — |-|dTr Vﬂ'”dw <é (II) d, > ,l_l,/Cz > /LH(’/T, PO)/Cl C2J

Theorem ( Asymptotic convergence of Pl )

Let V* be the optimal robust value function. {my} policy sequence of algorithm.
Let Vi, be the true robust value function for policy m,. Let p = 0.

2\/ C1C2 C(a,ﬁ, O, )\)

1 c(@.B,00)

limsup [[V* — V|, <
k—o0

For some large enough k, V;, is e-optimal w.r.t V* under ||.||,,
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RLSPI Simulation Performance

@ We train our algorithm on MountainCarContinuous environment in OpenAl
Gym with default parameters

@ We test for robustness by changing the power parameter

AN .

A N
\ S\
N

40

201+

—— DDPG

— LSPI

04 — RLSPI

~—— Soft-Robust DDPG
I I

10 20 30 40 50
Percentage change from nominal value of '‘power’

Average cumulative Reward

Soft-Robust DDPG (Derman et al., 2018) =] = = E £ 9OQC
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RLSPI Simulation Performance

@ We train our algorithm on CartPole environment in OpenAl Gym with default
parameters

@ We test for robustness by changing the force-magnitude parameter

N
=}
S

-
~
v

-
u
o

N
A Y
.\
\

-
N
w

Average cumulative Reward

100 \ \
751 — QL-FA
o — 1P \ N\
1 — RLSPI S\
i Soft-Robust DQN N
; !
0 20 40 60 80

Percentage change from nominal value of 'force_mag'

Soft-Robust DQN (Derman et al., 2018) o = = = = 9

Q (
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Thank you for listening!
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