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Introduction & Motivation

Treatment effect analysis has long been a central topic in a wide range of domains, including
econometrics, political sciences, healthcare and social sciences.

ATE and CATE, which stand for average treatment effect and conditional average treatment
effect respectively, have long been used to quantify the effect of a treatment. However, they fail
to capture distributional aspects of the treatment effect.

As we can see in the first plot, comparison of conditional means is only meaningful if the
corresponding variances are taken into account. This is one compelling reason to look beyond
the mean, but other aspects of the distributions can also be investigated.

Summary of contributions:

• Formal definition of the conditional distributional treatment effect (CoDiTE), associated with
a chosen distance function between distributions.

• Test of equality between the control and treatment distributions conditioned on the covariates,
using conditional mean embeddings.

• Exploratory analysis of where and by how much the control and treatment densities differ,
conditioned on the covariates, using conditional witness functions.

• Treatment effect analysis with respect to specific distributional quantities, such as conditional
variance, using u-statistic regression, an extension of kernel ridge regression.

Potential Outcomes: Notations & Assumptions

Notations

• (Ω,F , P ) is the underlying probability space.

•X is the input space and Y ⊆ R is the output space.

•Z : Ω→ {0, 1} represents treatment assignment (e.g. drug assignment).

•X : Ω→ X represents the covariates (e.g. patient characteristics).

• Y0, Y1 : Ω→ Y represent potential outcomes under control and treatment assignment, respec-
tively (e.g. blood pressure).

• Y = Y0(1− Z) + Y1Z represents the observed outcome, i.e. the potential outcome consistent
with the treatment assignment.

Assumptions

• Unconfoundedness: Z is independent of (Y0, Y1) given X.

• Overlap: 0 < e(X) = P (Z = 1 | X) = E[Z | X ] < 1.

Core Definitions

Conditional Distributional Treatment Effect (CoDiTE)

Let D be some distance function between probability measures. We define the conditional
distributional treatment effect (CoDiTE) associated with D as

UD(x) = D
(
PY0|X=x, PY1|X=x

)
.

The choice of D here should depend on what aspects of distribution is desired to be captured.

Precision of Estimating Heterogeneous Distributional Effects (PEHDE)

Given a distance function D, for an estimator ÛD of UD, we define the precision of estimating
heterogeneous distributional effects (PEHDE) as

ψD
(
ÛD
)

=
∥∥ÛD − UD∥∥2

2
= E

[∣∣ÛD(X)− UD(X)
∣∣2] .

The two questions we answer in this paper are as follows:

Q1: Are PY0|X=x and PY1|X=x different, i.e. is there any distributional effect of the treatment?
Q2: If so, how does the distribution of the treatment group differ from the control group?

CoDiTE associated with MMD via CMEs

In order to answer Q1, we choose D to be the maximum mean discrepancy (MMD):

UMMD(x) = MMD
(
PY0|X=x, PY1|X=x

)
=
∥∥µY1|X=x − µY0|X=x

∥∥
H ,

where µY0|X=x and µY1|X=x are the conditional mean embeddings of Y0 and Y1 given X respec-
tively. If the MMD is associated with a characteristic kernel, PY0|X=x and PY1|X=x are equal if
and only if UMMD(x) = 0.

Hypotheses

Consider the following null and alternative hypotheses:

•H0: PY0|X=x = PY1|X=x PX-almost everywhere.

•H1: There exists A ⊆ X with positive measure such that PY0|X=x 6= PY1|X=x for all x ∈ A.

We can integrate UMMD(x) over X to obtain a test statistic for these hypotheses:

t = E
[∥∥µY1|X − µY0|X∥∥2

H

]
.

Then, using a conditional resampling scheme with this test statistic, we can perform a statis-
tical hypothesis test to test for these hypotheses.

Conditional Witness Functions

The conditional witness function between PY1|X=x and PY0|X=x is

µY1|X=x − µY0|X=x : Y → R.

• For y ∈ Y in regions where the density of PY1|X=x is greater than that of PY0|X=x we have
µY1|X=x(y)− µY0|X=x(y) > 0.

• For y in regions where the converse is true, we similarly have µY1|X=x(y)− µY0|X=x(y) < 0.

• The greater the difference in density, the greater the magnitude of the witness function.

Kernel U-Statistic Regression

Many interesting properties of a distribution, such as mean, variance and skewness, can be
represented as a U-statistic. Let Y1, ..., Yr be independent copies of Y , and let h : Yr → R be
a symmetric funciton. U-stiatistics are used to estimate functions of the form

E [h (Y1, ..., Yr)] .

We propose kernel U-statistic regression to estimate the conditional counterparts, for each of
the control and treatment groups, such as the conditional variance:

θ
(
PY0|X

)
= E [h (Y01, ...Y0r) | X1, ..., Xr] , θ

(
PY1|X

)
= E [h (Y11, ...Y1r) | X1, ..., Xr]

This is done by extending the usual kernel ridge regression for estimating the conditional mean.
Regression is performed in Hr, the r-times tensor product of the original RKHS.
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