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The deadly triad (Chapter 11.3 of Sutton and Barto
(2018)) refers to the instability of an RL algorithm with
function approximation, off-policy learning, and
bootstrapping.

Linear Q-learning diverges in Barid’s counterexample (Baird, 1995)

wt+1 ← wt + α
(
Rt+1 + γmax

a
x(St+1, a)>wt − x>t wt

)
xt

xt
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Surprisingly, linear Q-learning with a target network (Mnih
et al., 2015) converges in Baird’s counterexample

Linear Q-learning with a target network:

wt+1 ← wt + α
(
Rt+1 + γmax

a
x(St+1, a)>θt − x>t wt

)
xt

θt+1 ← θt + β(wt − θt)

Is this just by accident? No!
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It is now proved that target network is an effective method
to break the deadly triad in linear RL

wt+1 ← wt + α(Rt+1 + γmax
a

x(St+1, a)>θt − x>t wt)xt − αtηwt

θt+1 ← ΓB1(θt + β(ΓB2(wt)− θt))

η: ridge regularization

ΓBi
: projection to balls of radius Bi

A sufficient condition (not necessarily necessary): If ‖X‖ is not too
large, B1 and B2 are not too small, then {wt} converges to
regularized TD fixed point.
The behavior policy can be w -dependent so it changes every step,
and can be arbitrarily different from the target policy.
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Why do we need two projections in updating the target
network?

With only ΓB1 :

d

dt
θ(t) = w∗(θ(t))− θ(t) + ζ(t),

where ζ(t) is a reflection term.

With both ΓB1 and ΓB2 :

d

dt
θ(t) = w∗(θ(t))− θ(t).

ΓB2 also ensures target network changes sufficiently slowly.
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Our analysis of target network is widely applicable

(algorithms with linear per-step computational complexity)

Policy Evaluation
• Linear off-policy TD in discounted MDPs
• Linear off-policy TD in average-reward MDPs (the first convergent linear

off-policy policy evaluation algorithm for average-reward MDPs)

Control
• Linear Q-learning in discounted MDPs (the first convergent linear

Q-learning with changing behavior policies and do not require behavior
policies to be similar to target policies)

• Improve Greedy GQ (Maei et al., 2010) to work with changing behavior
policies

• Linear Q-learning in average-reward MDPs (the first convergent linear
off-policy control algorithm for average-reward MDPs)
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Thanks
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