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Adversarial examples

- Adversarial perturbation: extremely small perturbation that
changes label of correctly classified input

+.007 x

-

“panda” noise “gibbon”

57.7% confidence 99.3% confidence

- Challenge reliability of deep learning algorithms
- Still poor theoretical understanding
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Adversarial Robustness Guarantees

- Independent random weights and biases
- Infinite width limit

- For any input x with entries with O(1) magnitude and any
p = 1, with high probability the {° distance to the
classification boundary is at least

lll,, = (Z I:qulp>

7

- Applies to any combination of fully connected or
convolutional layers, skipped connections and pooling

- Applies to DNNSs trained with Bayesian inference if target
function generated by random DNN employed as prior



Experiments on random convolutional
DNNs (7 hidden layers)
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Trained convolutional DNNs

- MNIST: training does not change distance to boundary

- CIFAR10: training decreases distance to boundary due to
visual structure (background, relevant part can be small)
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