# In-Database Regression in Input Sparsity Time



Rajesh Jayaram Carnegie Mellon University



Alireza Samadian University of Pittsburgh



David Woodruff
Carnegie Mellon University



Peng Ye Tsinghua University

### Motivation

- Often data used by data scientists comes from a database join.
- For example:
  - A grocery store which wants to predict the sales of items
- Companies and Teams working on In-Database Machine Learning:
  - RelationalAI
  - Google's Bigquery ML
- Problems with Naïve approach:
  - Join increases the size
- In-Database ML means solving the problem without explicitly computing the join itself.
  - In-Database ML can be 100 times faster in practice for linear regression.[1]



#### Problem Definition

• Given a join query  $J = T_1 \bowtie T_2 \bowtie \cdots \bowtie T_n$ , we would like to perform linear regression on J.

#### Prior Works

- Using Functional Aggregation Queries (FAQ) we can solve linear regression by computing  $J^TJ$  [2,3].
  - For acyclic joins it has the worst-case time complexity  $\tilde{O}(d^4m n)$
  - For two table instances with numerical data, it can be improved:
    - $\tilde{O}(d^{\omega-1} n)$
    - $\omega \approx 2.373$  is matrix multiplication exponent

#### Our Results

- We solve the problem using subspace embedding.
- $A' \in \mathbb{R}^{k \times d}$  is a subspace embedding of  $A \in \mathbb{R}^{n \times d}$  if for all  $x \in \mathbb{R}^d$  we have  $(1 - \epsilon) \|Ax\|_2 \le \|A'x\|_2 \le (1 + \epsilon) \|Ax\|_2$
- We design a sketching algorithm that provides a subspace embedding for 2 tables join with probability at least 9/10
  - Standard sketching algorithms need all the data to be present.
  - We design a new sketching algorithm for joins.
  - We divide the join into multiple blocks (without computing the join itself) and for each block we use
    - TensorSketch techniques [4]
    - Leverage score sampling: we sample using a novel sampling scheme without computing the leverage scores for all the rows in the join explicitly.
- Runtime of our algorithm is

• 
$$\tilde{O}\left(\frac{1}{\epsilon^2}\left((n_1+n_2)d+d^3\right)\right)$$
 for dense data and  $k=\tilde{O}(\frac{d^2}{\epsilon^2})$   
•  $\tilde{O}\left(\frac{1}{\epsilon^2}(nnz(T_1)+nnz(T_2)+d^5)\right)$  for sparse data and  $k=\tilde{O}(\frac{d^4}{\epsilon^2})$ 

• 
$$\tilde{O}\left(\frac{1}{\epsilon^2}(nnz(T_1) + nnz(T_2) + d^5)\right)$$
 for sparse data and  $k = \tilde{O}(\frac{d^4}{\epsilon^2})$ 

#### Our Results

- We extend our subspace embedding into machine precision regression.
- For linear regression problem, machine precision regression algorithms can obtain x' such that

$$||Ax' - b||_2 \le (1 + \epsilon) \min_{x} ||Ax - b||_2$$

- Our machine precision regression algorithm has the following runtime:
  - $\tilde{O}\left(\left((n_1+n_2)d+d^3\right)\log(\frac{1}{\epsilon})\right)$  for dense data
  - $\tilde{O}\left((nnz(T_1) + nnz(T_2) + d^5)\log(\frac{1}{\epsilon})\right)$  for sparse data
- For general joins, we can improve FAQ based algorithm for Ridge Regression using TensorSketch [4].

## Experimental Results

• We compare our 2-table algorithm on LastFM dataset [5] and MovieLens dataset [6].

| Dataset   | $n_1$   | $n_2$  | d  | $T_{FAQ}(sec)$ | $T_{ours}(sec)$ | err   |
|-----------|---------|--------|----|----------------|-----------------|-------|
| LastFM    | 92834   | 186479 | 6  | .034           | .011            | 0.70% |
| MovieLens | 1000209 | 3883   | 23 | .820           | .088            | 0.66% |

$$err = \frac{\|Jx' - b\|_2^2 - \|Jx - b\|_2^2}{\|Jx - b\|_2^2}$$

#### References

[1] Schleich, M., Olteanu, D., Abo Khamis, M., Ngo, H. Q., & Nguyen, X. (2019, June). A layered aggregate engine for analytics workloads. In Proceedings of the 2019 International Conference on Management of Data (pp. 1642-1659).

[2] Abo Khamis, M., Ngo, H. Q., & Rudra, A. (2016, June). FAQ: questions asked frequently. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (pp. 13-28).

[3] Abo Khamis, Mahmoud, Hung Q. Ngo, XuanLong Nguyen, Dan Olteanu, and Maximilian Schleich. "In-database learning with sparse tensors." In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pp. 325-340. 2018.

[4] Ahle, Thomas D., Michael Kapralov, Jakob BT Knudsen, Rasmus Pagh, Ameya Velingker, David P. Woodruff, and Amir Zandieh. "Oblivious sketching of high-degree polynomial kernels." In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 141-160. Society for Industrial and Applied Mathematics, 2020.

[5] Cantador, Iván, Peter Brusilovsky, and Tsvi Kuflik. "Second workshop on information heterogeneity and fusion in recommender systems (HetRec2011)." In Proceedings of the fifth ACM conference on Recommender systems, pp. 387-388. 2011.

[6] Harper, F. Maxwell, and Joseph A. Konstan. "The movielens datasets: History and context." Acm transactions on interactive intelligent systems (tiis) 5, no. 4 (2015): 1-19.