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Classical methods

Can we invent new state-of-the-art codes using deep-learning?
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Inventing codes



Code Structure

Linear: Classical codes

Non-linear: Neural networks
▸ Fully connected networks worser than trivial codes (Jiang et. al ’19)
▸ Still need a structure

KO neural networks ←→ KO codes
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KO neural networks

Encoding of Reed-Muller/Polar codes
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KO neural networks

Plotkin block

Plotkin

v ∈ {0,1}n u ∈ {0,1}n

(u, u ⊕ v) ∈ {0,1}2n



KO neural networks

KO block

g

v ∈ ℝn u ∈ ℝn

g(u, v) ∈ ℝ2n
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Performance of KO codes
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Code-dimension=46, Block length = 512.
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