KO codes: inventing nonlinear encoding and decoding for wireless communication via deep-learning

ICML 2021

Ashok Vardhan Makkuva*, Xiyang Liu*, Mohammad Vahid Jamali, Hessam Mahdavifar, Sewoong Oh, Pramod Viswanath

Main goal

Classical methods

Classical methods

• Can we invent new state-of-the-art codes using deep-learning?

Inventing codes

• Linear: Classical codes

• Linear: Classical codes

• Non-linear: Neural networks

• Linear: Classical codes

- Non-linear: Neural networks
 - Fully connected networks worser than trivial codes (Jiang et. al '19)
 - Still need a structure

• Linear: Classical codes

- Non-linear: Neural networks
 - Fully connected networks worser than trivial codes (Jiang et. al '19)
 - Still need a structure

• KO neural networks \leftrightarrow KO codes

• Encoding of Reed-Muller/Polar codes

• Plotkin block

KO block

• KO neural network

Performance of KO codes

