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Semi-supervised Learning (SSL)

Simultaneously exploring both labeled and unlabeled data *
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LOliver et al. Realistic Evaluation of Deep Semi-Supervised Learning Algorithms. NeurlPS 2018.
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Delve into a State-of-the-art SSL Method: FixMatch?
Main Idea: Use the model's predictions on weakly-augmented unlabeled images to generate
pseudo-labels for strongly-augmented versions of the same images.

Confirmation Bias: The performance of a student is restricted by the teacher when learning
from inaccurate pseudo-labels.
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2Sohn et al. Realistic Evaluation of Deep Semi-Supervised Learning Algorithms. NeurlPS 2018.
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Transfer Learning (TL)

Fine-tuning a pre-trained model to the target data 3
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3Kornblith et al. Do Better ImageNet Models Transfer Better? CVPR 2019.
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Delve into a State-of-the-art TL Method: Co-Tuning*

Main Idea: Learn the relationship between source categories and target categories from the
pre-trained model with calibrated prediction to fully transfer pre-trained models.

Model Shift: The fine-tuned model shifts towards the limited labeled data, without exploring
the intrinsic structure of unlabeled data.
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(a) Diagram of Co-Tuning (b) Acc w.r.t label ratio

*You et al. Co- Tuning for Transfer Learning. NeurlPS 2020.
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Data-Efficient Deep Learning
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Figure: Comparisons among techniques. (a) Transfer Learning: only fine-tuning on £ with a
regularization term; (b) Semi-supervised Learning: a common practice for SSL is a CE loss on £ while
self-training on U without a decent pretrained model; (c) SimCLRv2: fine-tune model M on L first
and then distill on U/; (d) Self-Tuning: unify the exploration of £ and &/ and the transfer of model M.
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How to Tackle Confirmation Bias?

@ The Devil Lies in Cross-Entropy Loss
@ Contrastive Learning Loss Underutilizes Labels
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Figure: Conceptual comparison of various loss functions: (a) CE: cross-entropy loss will be easily
misled by false pseudo-labels; (b) CL: contrastive learning loss underutilizes labels and pseudo-labels;
(c) PGC: Pseudo Group Contrast mechanism to mitigate confirmation bias.
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From Contrastive Learning to Pseudo Group Contrast (PGC)

o Contrastive Learning: maximizes the similarity between the query q with its
corresponding positive key ko (a differently augmented view of the same data example)

exp(q - ko/T)
D ; (1)
exp(a - ko/T) + > g1 exp(q - ka/T)

Lep, = —log

@ Pseudo Group Contrast: introduces a group of positive keys in the same pseudo-class
to contrast with all negative keys from other pseudo-classes.
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Why can PGC boost the tolerance to false labels?

@ The softmax function generates a predicted probability vector with a sum of 1. Positive
keys {k§, ki, k3, -+ ,k}} from the same pseudo-class will compete with each other.

@ If some pseudo-labels in the positive group are wrong, those keys with true pseudo-labels
will win, since their representations are more similar to the query, compared to false ones.
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Model Shift: Unifying and Sharing
@ A unified form to fully exploit M, £ and U

@ A shared queue list across £ and U/
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Figure: The network architecture of Self-Tuning. The “Map" denotes a mapping function which
assigns a newly-generated key to the corresoping queue according to its label or pseudo-label.
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Experiments and Results

Table 1. Classification accuracy (%) 1 of Self-Tuning and various baselines on standard TL benchmarks (ResNet-50 pre-trained).

Dataset ‘ Type ‘Method ‘ Label Proportion
‘ \ 15% 30% 50% 100%
Fine-Tuning (baseline) 45.25+0.12 59.68+0.21 70.12+0.29 78.01+0.16
L2-SP (Li et al., 2018) 45.08+0.19 57.78+0.24 69.47+0.29 78.44+0.17
TL |DELTA (Lietal., 2019) 46.83+0.21 60.3740.25 71.38+0.20 78.63+0.18
BSS (Chen et al., 2019) 47.74+0.23 63.38+0.29 72.56+0.17 78.8540.31
Co-Tuning (You et al., 2020) 52.58+053 66.47+0.17 74.64+036 81.24+0.14
II-model (Laine & Aila, 2017) 45.2040.23 56.2040.29 64.07+0.32 -
Pseudo-Labeling (Lee, 2013) 45.3340.24 62.024031 72.3040.29 -
CUB-200-2011 ggL | Mean Teacher (Tarvainen & Valpola, 2017)|53.26+019 66.66+020 7437050 —
UDA (Xie et al., 2020) 46.90+0.31 61.16+035 71.86+0.43 -
FixMatch (Sohn et al., 2020) 44.06+0.23 63.54+0.18 75.96+0.29 -
SimCLRv2 (Chen et al., 2020b) 45.74+0.15 62.704+024 71.01+0.34 -
Co-Tuning + Pseudo-Labeling 54.11+024 68.07+032 75.94+034 -
Combine | Co-Tuning + Mean Teacher 57.92+0.18 67.98+0.25 72.8240.29 -
Co-Tuning + FixMatch 46.81+021 58.88+0.23 73.07+0.29 -

| Self-Tuning (ours)

|64.17£0.47 75.13+0.35 80.22:x036 83.95+0.18

Ximei Wang (Tsinghua University)

Self-Tuning

July 10, 2021

11/12



Summary

A new setup named data-efficient deep learning to unleash the power of both transfer
learning and semi-supervised learning.

@ To tackle model shift and confirmation bias problems, we propose Self-Tuning to unify
the exploration of labeled and unlabeled data and the transfer of a pre-trained model.

@ A general Pseudo Group Contrast mechanism to mitigate the reliance on pseudo-labels
and boost the tolerance to false labels.

o Comprehensive experiments demonstrate that Self-Tuning outperforms its SSL and TL
counterparts on five tasks by sharp margins.

@ Code will be available at @ github.com/thuml/Self-Tuning
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