Self-Tuning for Data-Efficient Deep Learning

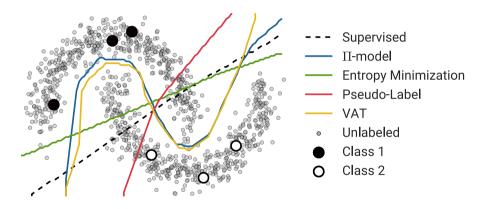
Ximei Wang*, Jinghan Gao*, Mingsheng Long (⋈), and Jianmin Wang

School of Software, BNRist, Tsinghua University

wxm17@mails.tsinghua.edu.cn, https://wxm17.github.io/ International Conference on Machine Learning (ICML), 2021

Semi-supervised Learning (SSL)

Simultaneously exploring both labeled and unlabeled data ¹



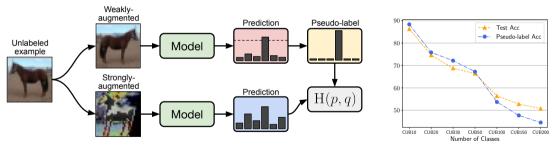
¹Oliver et al. Realistic Evaluation of Deep Semi-Supervised Learning Algorithms. NeurIPS 2018.

2/12

Delve into a State-of-the-art SSL Method: FixMatch²

Main Idea: Use the model's predictions on *weakly-augmented* unlabeled images to generate pseudo-labels for *strongly-augmented* versions of the same images.

Confirmation Bias: The performance of a student is restricted by the teacher when learning from inaccurate pseudo-labels.



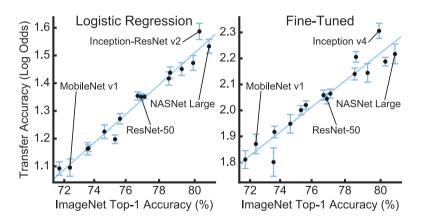
(a) Diagram of FixMatch

(b) Accuracy w.r.t label size

²Sohn et al. Realistic Evaluation of Deep Semi-Supervised Learning Algorithms. NeurIPS 2018.

Transfer Learning (TL)

Fine-tuning a pre-trained model to the target data ³

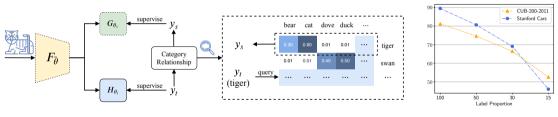


³Kornblith et al. Do Better ImageNet Models Transfer Better? CVPR 2019.

Delve into a State-of-the-art TL Method: Co-Tuning⁴

Main Idea: Learn the *relationship* between source categories and target categories from the pre-trained model with calibrated prediction to fully transfer pre-trained models.

Model Shift: The fine-tuned model shifts towards the limited labeled data, without exploring the intrinsic structure of unlabeled data.



⁽a) Diagram of Co-Tuning

⁽b) Acc w.r.t label ratio

⁴ You et al. Co-Tuning for Transfer Learning. NeurIPS 2020.

Data-Efficient Deep Learning

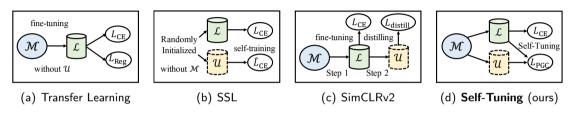


Figure: Comparisons among techniques. (a) **Transfer Learning**: only fine-tuning on \mathcal{L} with a regularization term; (b) **Semi-supervised Learning**: a common practice for SSL is a CE loss on \mathcal{L} while self-training on \mathcal{U} without a decent pretrained model; (c) **SimCLRv2**: fine-tune model \mathcal{M} on \mathcal{L} first and then distill on \mathcal{U} ; (d) **Self-Tuning**: unify the exploration of \mathcal{L} and \mathcal{U} and the transfer of model \mathcal{M} .

How to Tackle Confirmation Bias?

- The Devil Lies in Cross-Entropy Loss
- Contrastive Learning Loss Underutilizes Labels

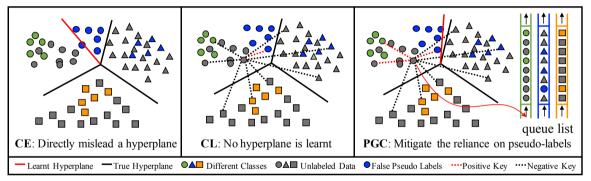


Figure: Conceptual comparison of various loss functions: (a) **CE**: cross-entropy loss will be easily misled by false pseudo-labels; (b) **CL**: contrastive learning loss underutilizes labels and pseudo-labels; (c) **PGC**: Pseudo Group Contrast mechanism to mitigate confirmation bias.

From Contrastive Learning to Pseudo Group Contrast (PGC)

• Contrastive Learning: maximizes the similarity between the query q with its corresponding positive key k_0 (a differently augmented view of the same data example)

$$L_{\rm CL} = -\log \frac{\exp(\mathbf{q} \cdot \mathbf{k}_0/\tau)}{\exp(\mathbf{q} \cdot \mathbf{k}_0/\tau) + \sum_{d=1}^{D} \exp(\mathbf{q} \cdot \mathbf{k}_d/\tau)},\tag{1}$$

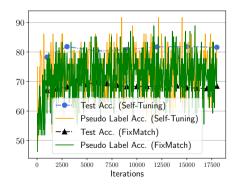
• **Pseudo Group Contrast**: introduces a group of positive keys in the same pseudo-class to contrast with all negative keys from other pseudo-classes.

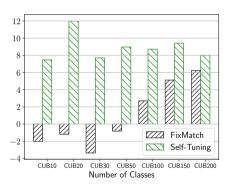
$$\widehat{L}_{PGC} = -\frac{1}{D+1} \sum_{d=0}^{D} \log \frac{\exp(\mathbf{q} \cdot \mathbf{k}_{d}^{\widehat{y}}/\tau)}{\exp(\mathbf{q} \cdot \mathbf{k}_{0}^{\widehat{y}}/\tau) + \sum_{c=1}^{\{1,2,\cdots,C\}} \sum_{j=1}^{D} \exp(\mathbf{q} \cdot \mathbf{k}_{j}^{c}/\tau)}, \quad (2)$$

8 / 12

Why can PGC boost the tolerance to false labels?

- The softmax function generates a predicted probability vector with a sum of 1. Positive keys $\{k_0^{\widehat{y}}, k_1^{\widehat{y}}, k_2^{\widehat{y}}, \cdots, k_D^{\widehat{y}}\}$ from the same pseudo-class will compete with each other.
- If some pseudo-labels in the positive group are wrong, those keys with true pseudo-labels will win, since their representations are more similar to the query, compared to false ones.





(a) Training Process on CUB30

(b) $Acc_{test} - Acc_{pseudo-labels}$

Model Shift: Unifying and Sharing

- ullet A unified form to fully exploit \mathcal{M} , \mathcal{L} and \mathcal{U}
- ullet A shared queue list across ${\mathcal L}$ and ${\mathcal U}$

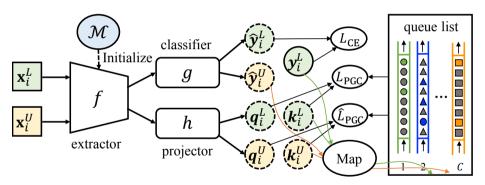


Figure: The network architecture of Self-Tuning. The "Map" denotes a mapping function which assigns a newly-generated key to the corresoping queue according to its label or pseudo-label.

Experiments and Results

Table 1. Classification accuracy (%) ↑ of Self-Tuning and various baselines on standard TL benchmarks (ResNet-50 pre-trained).

Dataset	Type	Method	Label Proportion			
			15%	30%	50%	100%
CUB-200-2011	TL SSL Combine	Fine-Tuning (baseline) L²-SP (Li et al., 2018) DELTA (Li et al., 2019) BSS (Chen et al., 2019) Co-Tuning (You et al., 2020) II-model (Laine & Aila, 2017) Pseudo-Labeling (Lee, 2013) Mean Teacher (Tarvainen & Valpola, 2017) UDA (Xie et al., 2020) FixMatch (Sohn et al., 2020) SimCLRv2 (Chen et al., 2020b) Co-Tuning + Pseudo-Labeling Co-Tuning + Mean Teacher Co-Tuning + FixMatch	$\begin{array}{c} 45.08 \pm 0.19 \\ 46.83 \pm 0.21 \\ 47.74 \pm 0.23 \\ 52.58 \pm 0.53 \\ \end{array}$ $\begin{array}{c} 45.20 \pm 0.23 \\ 45.33 \pm 0.24 \\ 53.26 \pm 0.19 \\ 46.90 \pm 0.31 \\ 44.06 \pm 0.23 \\ 45.74 \pm 0.15 \\ \end{array}$ $\begin{array}{c} 54.11 \pm 0.24 \\ 57.92 \pm 0.18 \\ \end{array}$	$\begin{array}{c} 57.78 \pm 0.24 \\ 60.37 \pm 0.25 \\ 63.38 \pm 0.29 \\ 66.47 \pm 0.17 \\ \\ 56.20 \pm 0.29 \\ 62.02 \pm 0.31 \\ 66.66 \pm 0.20 \\ 61.16 \pm 0.35 \\ 63.54 \pm 0.18 \\ 62.70 \pm 0.24 \end{array}$	74.37 ± 0.30 71.86 ± 0.43 75.96 ± 0.29 71.01 ± 0.34 75.94 ± 0.34 72.82 ± 0.29	78.44±0.17 78.63±0.18 78.85±0.31 81.24±0.14
		Self-Tuning (ours)	64.17 ±0.47	75.13 ±0.35	80.22 ±0.36	83.95 ±0.18

11/12

Summary

- A new setup named data-efficient deep learning to unleash the power of both transfer learning and semi-supervised learning.
- To tackle model shift and confirmation bias problems, we propose *Self-Tuning* to unify the exploration of labeled and unlabeled data and the transfer of a pre-trained model.
- A general Pseudo Group Contrast mechanism to mitigate the reliance on pseudo-labels and boost the tolerance to false labels.
- Comprehensive experiments demonstrate that Self-Tuning outperforms its SSL and TL counterparts on five tasks by sharp margins.
- Code will be available at @ github.com/thuml/Self-Tuning