
Self-Tuning for Data-Efficient Deep Learning

Ximei Wang*, Jinghan Gao*, Mingsheng Long (B), and Jianmin Wang

School of Software, BNRist, Tsinghua University

wxm17@mails.tsinghua.edu.cn, https://wxm17.github.io/
International Conference on Machine Learning (ICML), 2021

Ximei Wang (Tsinghua University) Self-Tuning July 10, 2021 1 / 12

Semi-supervised Learning (SSL)
Simultaneously exploring both labeled and unlabeled data 1

A depiction of this concept on a simple toy problem is shown in fig. 1, where the scarcity of labeled
data makes the decision boundary between two classes ambiguous but the additional unlabeled data
reveals clear structure which can be discovered by an effective SSL algorithm.

Figure 1: Behavior of the SSL approaches described in
section 3 on the “two moons” dataset. We omit “Mean
Teacher” and “Temporal Ensembling” (appendix A.1.2)
because they behave like ⇧-Model (appendix A.1.1).
Each approach was applied to a MLP with three hid-
den layers, each with 10 ReLU units. When trained on
only the labeled data (large black and white dots), the
decision boundary (dashed line) does not follow the con-
tours of the data “manifold”, as indicated by additional
unlabeled data (small grey dots). In a simplified view,
the goal of SSL is to leverage the unlabeled data to pro-
duce a decision boundary which better reflects the data’s
underlying structure.

A comprehensive overview of SSL methods is
out of the scope of this paper; we refer inter-
ested readers to [53, 6]. Instead, we focus on the
class of methods which solely involve adding an
additional loss term to the training of a neural
network, and otherwise leave the training and
model unchanged from what would be used in
the fully-supervised setting. We limit our focus
to these approaches for the pragmatic reasons
that they are simple to describe and implement
and that they are currently the state-of-the-art for
SSL on image classification datasets. Overall,
the methods we consider fall into two classes:
Consistency regularization, which enforces that
realistic perturbations of data points x 2 DUL

should not significantly change the output of
f✓(x); and entropy minimization, which encour-
ages more confident predictions on unlabeled
data. We now describe these methods in broad
terms. See appendix A for more detail, and ad-
ditional references to other SSL methods.

⇧-Model: The simplest setting in which to ap-
ply consistency regularization is when the pre-

diction function f✓(x) is itself stochastic, i.e. it can produce different outputs for the same input x.
This is quite common in practice during training when f✓(x) is a neural network due to common
regularization techniques such as data augmentation, dropout, and adding noise. ⇧-Model [32, 46]
adds a loss term which encourages the distance between a network’s output for different passes of
x 2 DUL through the network to be small.

Mean Teacher: A difficulty with the ⇧-model approach is that it relies on a potentially unstable
“target” prediction, namely the second stochastic network prediction which can rapidly change over
the course of training. As a result, [50] proposed to obtain a more stable target output f̄✓(x) for
x 2 DUL by setting the target to predictions made using an exponential moving average of parameters
from previous training steps.

Virtual Adversarial Training: Instead of relying on the built-in stochasticity of f✓(x), Virtual
Adversarial Training (VAT) [39] directly approximates a tiny perturbation radv to add to x which
would most significantly affect the output of the prediction function.

Entropy Minimization (EntMin): EntMin [21] adds a loss term applied that encourages the network
to make “confident” (low-entropy) predictions for all unlabeled examples, regardless of their class.

Pseudo-Labeling: Pseudo-labeling [34] proceeds by producing “pseudo-labels” for DUL using the
prediction function itself over the course of training. Pseudo-labels which have a corresponding class
probability which is larger than a predefined threshold are used as targets for a standard supervised
loss function applied to DUL.

4 Experiments

In this section we cover issues with the evaluation of SSL techniques. We first address P.1 and create
a unified reimplementation of the methods outlined in section 3 using a common model architecture
and training procedure. Our goal is not to produce state-of-the-art results, but instead to provide a
rigorous comparative analysis in a common framework. Further, because our model architecture and
training hyperparameters differ from those used to test SSL methods in the past, our results are not
directly comparable to past work and should therefore be considered in isolation (see appendix D for

4

1Oliver et al. Realistic Evaluation of Deep Semi-Supervised Learning Algorithms. NeurIPS 2018.

Ximei Wang (Tsinghua University) Self-Tuning July 10, 2021 2 / 12

Delve into a State-of-the-art SSL Method: FixMatch2

Main Idea: Use the model’s predictions on weakly-augmented unlabeled images to generate
pseudo-labels for strongly-augmented versions of the same images.
Confirmation Bias: The performance of a student is restricted by the teacher when learning
from inaccurate pseudo-labels.

Model

Model

Unlabeled
example

Weakly-
augmented

Strongly-
augmented

Prediction Pseudo-label

Prediction

Figure 1: Diagram of FixMatch. A weakly-augmented image (top) is fed into the model to obtain
predictions (red box). When the model assigns a probability to any class which is above a threshold
(dotted line), the prediction is converted to a one-hot pseudo-label. Then, we compute the model’s
prediction for a strong augmentation of the same image (bottom). The model is trained to make its
prediction on the strongly-augmented version match the pseudo-label via a cross-entropy loss.

In this work, we break the trend of recent state-of-the-art methods that combine increasingly complex
mechanisms [4, 54, 3] and produce a method that is simpler, but also more accurate. Our algorithm,
FixMatch, produces artificial labels using both consistency regularization and pseudo-labeling.
Crucially, the artificial label is produced based on a weakly-augmented unlabeled image (e.g., using
only flip-and-shift data augmentation) which is used as a target when the model is fed a strongly-
augmented version of the same image. Inspired by UDA [54] and ReMixMatch [3], we leverage
Cutout [14], CTAugment [3], and RandAugment [11] for strong augmentation, which all produce
heavily-distorted versions of a given image. Following the approach of pseudo-labeling [25], we
only retain an artificial label if the model assigns a high probability to one of the possible classes. A
diagram of FixMatch is shown in fig. 1.

Despite its simplicity, we show that FixMatch obtains state-of-the-art performance on the most
commonly-studied SSL benchmarks. For example, FixMatch achieves 94.93% accuracy on CIFAR-10
with 250 labeled examples compared to the previous state-of-the-art of 93.73% [3] in the standard
experimental setting from [36]. We also explore the limits of our approach by applying it in the
extremely-scarce-labels regime, obtaining 88.61% accuracy on CIFAR-10 with only 4 labels per
class. Since FixMatch is a simplification of existing approaches but achieves substantially better
performance, we include an extensive ablation study to determine which factors contribute the most
to its success. A key benefit of FixMatch being a simplification of existing methods is that it requires
many fewer additional hyperparameters. As such, it allows us to perform an extensive ablation
study of each of them. Our ablation study also includes basic fully-supervised learning experimental
choices that are often ignored or not reported when new SSL methods are proposed (such as the
optimizer or learning rate schedule).

2 FixMatch

FixMatch is a combination of two approaches to SSL: Consistency regularization and pseudo-labeling.
Its main novelty comes from the combination of these two ingredients as well as the use of a separate
weak and strong augmentation when performing consistency regularization. In this section, we first
review consistency regularization and pseudo-labeling before describing FixMatch in detail. We also
describe the other factors, such as regularization, which contribute to FixMatch’s empirical success.

For an L-class classification problem, let X =
�
(xb, pb) : b 2 (1, . . . , B)

be a batch of B labeled

examples, where xb are the training examples and pb are one-hot labels. Let U =
�
ub : b 2

(1, . . . , µB)

be a batch of µB unlabeled examples where µ is a hyperparameter that determines the
relative sizes of X and U . Let pm(y | x) be the predicted class distribution produced by the model
for input x. We denote the cross-entropy between two probability distributions p and q as H(p, q).
We perform two types of augmentations as part of FixMatch: strong and weak, denoted by A(·) and
↵(·) respectively. We describe the form of augmentation we use for A and ↵ in section 2.3.

2

(a) Diagram of FixMatch

CUB10 CUB20 CUB30 CUB50 CUB100 CUB150 CUB200

Number of Classes

50

60

70

80

90
Test Acc

Pseudo-label Acc

(b) Accuracy w.r.t label size

2Sohn et al. Realistic Evaluation of Deep Semi-Supervised Learning Algorithms. NeurIPS 2018.

Ximei Wang (Tsinghua University) Self-Tuning July 10, 2021 3 / 12

Transfer Learning (TL)
Fine-tuning a pre-trained model to the target data 3

Do Better ImageNet Models Transfer Better?

Simon Kornblith⇤, Jonathon Shlens, and Quoc V. Le
Google Brain

{skornblith,shlens,qvl}@google.com

Abstract

Transfer learning is a cornerstone of computer vision,
yet little work has been done to evaluate the relationship
between architecture and transfer. An implicit hypothesis
in modern computer vision research is that models that per-
form better on ImageNet necessarily perform better on other
vision tasks. However, this hypothesis has never been sys-
tematically tested. Here, we compare the performance of 16
classification networks on 12 image classification datasets.
We find that, when networks are used as fixed feature ex-
tractors or fine-tuned, there is a strong correlation between
ImageNet accuracy and transfer accuracy (r = 0.99 and
0.96, respectively). In the former setting, we find that this re-
lationship is very sensitive to the way in which networks are
trained on ImageNet; many common forms of regularization
slightly improve ImageNet accuracy but yield penultimate
layer features that are much worse for transfer learning.
Additionally, we find that, on two small fine-grained image
classification datasets, pretraining on ImageNet provides
minimal benefits, indicating the learned features from Ima-
geNet do not transfer well to fine-grained tasks. Together,
our results show that ImageNet architectures generalize well
across datasets, but ImageNet features are less general than
previously suggested.

1. Introduction
The last decade of computer vision research has pur-

sued academic benchmarks as a measure of progress. No
benchmark has been as hotly pursued as ImageNet [15, 60].
Network architectures measured against this dataset have
fueled much progress in computer vision research across
a broad array of problems, including transferring to new
datasets [17, 59], object detection [32], image segmentation
[27, 7] and perceptual metrics of images [35]. An implicit
assumption behind this progress is that network architec-
tures that perform better on ImageNet necessarily perform
better on other vision tasks. Another assumption is that bet-

⇤Work done as a member of the Google AI Residency program (g.co/
airesidency).

Figure 1. Transfer learning performance is highly correlated with
ImageNet top-1 accuracy for fixed ImageNet features (left) and
fine-tuning from ImageNet initialization (right). The 16 points in
each plot represent transfer accuracy for 16 distinct CNN architec-
tures, averaged across 12 datasets after logit transformation (see
Section 3). Error bars measure variation in transfer accuracy across
datasets. These plots are replicated in Figure 2 (right).

ter network architectures learn better features that can be
transferred across vision-based tasks. Although previous
studies have provided some evidence for these hypotheses
(e.g. [6, 63, 32, 30, 27]), they have never been systematically
explored across network architectures.

In the present work, we seek to test these hypotheses by in-
vestigating the transferability of both ImageNet features and
ImageNet classification architectures. Specifically, we con-
duct a large-scale study of transfer learning across 16 modern
convolutional neural networks for image classification on
12 image classification datasets in 3 different experimental
settings: as fixed feature extractors [17, 59], fine-tuned from
ImageNet initialization [1, 24, 6], and trained from random
initialization. Our main contributions are as follows:

• Better ImageNet networks provide better penultimate
layer features for transfer learning with linear classi-
fication (r = 0.99), and better performance when the
entire network is fine-tuned (r = 0.96).

• Regularizers that improve ImageNet performance are
highly detrimental to the performance of transfer learn-
ing based on penultimate layer features.

• Architectures transfer well across tasks even when

1

ar
X

iv
:1

80
5.

08
97

4v
2

 [c
s.C

V
]

19
 N

ov
 2

01
8

3Kornblith et al. Do Better ImageNet Models Transfer Better? CVPR 2019.

Ximei Wang (Tsinghua University) Self-Tuning July 10, 2021 4 / 12

Delve into a State-of-the-art TL Method: Co-Tuning4

Main Idea: Learn the relationship between source categories and target categories from the
pre-trained model with calibrated prediction to fully transfer pre-trained models.
Model Shift: The fine-tuned model shifts towards the limited labeled data, without exploring
the intrinsic structure of unlabeled data.We dub this framework “Co-Tuning” because it uses both the ground-truth yt and probabilistic ys

estimated from the category relationship to fine-tune the full pre-trained network. It works by bringing
in additional supervision to fine-tuning, and is easy to implement based on Eq. 2.

Category
Relationship

supervise

supervise (tiger)
query

bear cat dove duck

tiger

swan0.01 0.01 0.40 0.50

0.30 0.60 0.01 0.01

Figure 2: Training pipeline of Co-Tuning.

4.2 Learning Category Relationship

The only unresolved problem in the Co-Tuning framework is how to learn the category relationship
p(ys|yt). Below we propose two ways to learn p(ys|yt).

A direct approach (Eq. 3) is to average the predictions of the pre-trained model over all samples of each
target category, where the pre-trained model f0 is regarded as a probabilistic model approximating
the conditional distribution f0(x) ⇡ p(ys|x).

p(ys|yt = y) ⇡ |Dy
t |�1

⌃(x,yt)2Dy
t
f0(x), Dy

t = {(x, yt) 2 Dt|yt = y}. (3)
Because categories in the pre-trained dataset are diverse enough to serve as basic categories to
compose target category (as shown in Fig. 1), a reverse approach is to first learn the mapping ys ! yt

from (f0(xt), yt) pairs, where yt is target label and f0(x) ⇡ p(ys|x) is a probability distribution over
source categories Ys. Then p(ys|yt) can be computed from p(yt|ys) by Bayes’s rule.

In practice, the direct approach is simple and straightforward, while the reverse one is more effective.
Therefore, we mainly study the reverse approach in our experiments, but also report the direct
approach in ablation study. Alg. 1 describes the full procedure of the reverse approach we propose.

Algorithm 1 Category relationship learning (the reverse approach)

Input: f0, source validation data Dv
s =

�
(xi

s, y
i
s)
 mv

i=1
, target training data Dt = {(xi

t, y
i
t)}mt

i=1

Output: Category relationship p(ys|yt)

Call Alg. 2 to calibrate f0 with Dv
s , which returns the calibrated deep model f̃0

Construct D̃t = {(f̃0(x
i
t), y

i
t)}mt

i=1, further split it into training set D̃train
t and validation set D̃v

t

Learn a neural network g from D̃train
t to map calibrated source predictions to target labels

Call Alg. 2 to calibrate g with D̃v
t , which returns p(yt|ys) ⇡ g̃(ys)

Compute marginal probability p(ys) and p(yt) from D̃t

Compute p(ys|yt) by Bayes’s rule: p(ys = i|yt = j) = p(ys=i)
p(yt=j)p(yt = j|ys = i)

Return p(ys|yt)

4.3 Neural Network Calibration

Alg. 1 mentions a calibration procedure because we want f0(x) to reflect the probability of source
categories with high fidelity. Without calibration, DNNs can be over-confident (Guo et al., 2017).
Therefore, we have to calibrate the probability output of f0(x). Guo et al. (2017) show that neural
networks calibration can be done by minimizing negative log-likelihood (NLL) on validation data
through adjusting a single temperature (Hinton et al., 2015) parameter. The formulation leads to a
convex optimization problem which is ready to solve. Alg. 2 describes the calibration procedure.

Note that the calibration of f0 only depends on the pre-trained dataset and the pre-trained model. We
advocate that pre-trained model providers release pre-trained models and their calibrated version,

5

(a) Diagram of Co-Tuning

100 50 30 15
Label Proportion

50

60

70

80

90
CUB-200-2011

Stanford Cars

(b) Acc w.r.t label ratio

4You et al. Co-Tuning for Transfer Learning. NeurIPS 2020.

Ximei Wang (Tsinghua University) Self-Tuning July 10, 2021 5 / 12

Data-Efficient Deep Learning

ℳ ℒ
𝐿$%

𝐿&'(
without 𝒰

fine-tuning

(a) Transfer Learning

ℒ

"
self-training

#$%

#&$%

Randomly
Initialized

withoutℳ

(b) SSL

𝒰ℒ

fine-tuning distilling

Step 1 Step 2

𝐿$% 𝐿&'()'**

ℳ

(c) SimCLRv2

!"#$

ℒ

&

!$'
Self-Tuningℳ

(d) Self-Tuning (ours)

Figure: Comparisons among techniques. (a) Transfer Learning: only fine-tuning on L with a
regularization term; (b) Semi-supervised Learning: a common practice for SSL is a CE loss on L while
self-training on U without a decent pretrained model; (c) SimCLRv2: fine-tune model M on L first
and then distill on U ; (d) Self-Tuning: unify the exploration of L and U and the transfer of model M.

Ximei Wang (Tsinghua University) Self-Tuning July 10, 2021 6 / 12

How to Tackle Confirmation Bias?
The Devil Lies in Cross-Entropy Loss

Contrastive Learning Loss Underutilizes Labels

CE: Directly mislead a hyperplane CL: No hyperplane is learnt PGC: Mitigate the reliance on pseudo-labels

Learnt Hyperplane True Hyperplane Positive Key Negative KeyDifferent Classes False Pseudo LabelsUnlabeled Data

queue list

Figure: Conceptual comparison of various loss functions: (a) CE: cross-entropy loss will be easily
misled by false pseudo-labels; (b) CL: contrastive learning loss underutilizes labels and pseudo-labels;
(c) PGC: Pseudo Group Contrast mechanism to mitigate confirmation bias.

Ximei Wang (Tsinghua University) Self-Tuning July 10, 2021 7 / 12

From Contrastive Learning to Pseudo Group Contrast (PGC)

Contrastive Learning: maximizes the similarity between the query q with its
corresponding positive key k0 (a differently augmented view of the same data example)

LCL = − log
exp(q · k0/τ)

exp(q · k0/τ) +
∑D

d=1 exp(q · kd/τ)
, (1)

Pseudo Group Contrast: introduces a group of positive keys in the same pseudo-class
to contrast with all negative keys from other pseudo-classes.

L̂PGC = − 1

D + 1

D∑

d=0

log
exp(q · kŷd/τ)

exp(q · kŷ0/τ) +
∑{1,2,··· ,C}

c=1

∑D
j=1 exp(q · kcj /τ)

, (2)

Ximei Wang (Tsinghua University) Self-Tuning July 10, 2021 8 / 12

Why can PGC boost the tolerance to false labels?
The softmax function generates a predicted probability vector with a sum of 1. Positive
keys {kŷ0 , k

ŷ
1 , k

ŷ
2 , · · · , k

ŷ
D} from the same pseudo-class will compete with each other.

If some pseudo-labels in the positive group are wrong, those keys with true pseudo-labels
will win, since their representations are more similar to the query, compared to false ones.

0 2500 5000 7500 10000 12500 15000 17500

Iterations

50

60

70

80

90

Moving Average Width: 1

Test Acc. (Self-Tuning)

Pseudo Label Acc. (Self-Tuning)

Test Acc. (FixMatch)

Pseudo Label Acc. (FixMatch)

(a) Training Process on CUB30

CUB10 CUB20 CUB30 CUB50 CUB100 CUB150 CUB200

Number of Classes

−4

−2

0

2

4

6

8

10

12

FixMatch

Self-Tuning

(b) Acctest −Accpseudo labels

Ximei Wang (Tsinghua University) Self-Tuning July 10, 2021 9 / 12

Model Shift: Unifying and Sharing
A unified form to fully exploit M, L and U
A shared queue list across L and U

!"#

ℳ

!"%

�&
'

ℎ

Initialize

extractor projector

classifier)*"#
)"#)*"%

+"#

+"%
,"#

,"%

-./01

-12
queue list

…

1 2 3Map

-/01

Figure: The network architecture of Self-Tuning. The “Map” denotes a mapping function which
assigns a newly-generated key to the corresoping queue according to its label or pseudo-label.

Ximei Wang (Tsinghua University) Self-Tuning July 10, 2021 10 / 12

Experiments and Results
Self-Tuning for Data-Efficient Deep Learning

Table 1. Classification accuracy (%) " of Self-Tuning and various baselines on standard TL benchmarks (ResNet-50 pre-trained).

Dataset Type Method Label Proportion

15% 30% 50% 100%

CUB-200-2011

TL

Fine-Tuning (baseline) 45.25±0.12 59.68±0.21 70.12±0.29 78.01±0.16

L2-SP (Li et al., 2018) 45.08±0.19 57.78±0.24 69.47±0.29 78.44±0.17

DELTA (Li et al., 2019) 46.83±0.21 60.37±0.25 71.38±0.20 78.63±0.18

BSS (Chen et al., 2019) 47.74±0.23 63.38±0.29 72.56±0.17 78.85±0.31

Co-Tuning (You et al., 2020) 52.58±0.53 66.47±0.17 74.64±0.36 81.24±0.14

SSL

⇧-model (Laine & Aila, 2017) 45.20±0.23 56.20±0.29 64.07±0.32 –
Pseudo-Labeling (Lee, 2013) 45.33±0.24 62.02±0.31 72.30±0.29 –
Mean Teacher (Tarvainen & Valpola, 2017) 53.26±0.19 66.66±0.20 74.37±0.30 –
UDA (Xie et al., 2020) 46.90±0.31 61.16±0.35 71.86±0.43 –
FixMatch (Sohn et al., 2020) 44.06±0.23 63.54±0.18 75.96±0.29 –
SimCLRv2 (Chen et al., 2020b) 45.74±0.15 62.70±0.24 71.01±0.34 –

Combine
Co-Tuning + Pseudo-Labeling 54.11±0.24 68.07±0.32 75.94±0.34 –
Co-Tuning + Mean Teacher 57.92±0.18 67.98±0.25 72.82±0.29 –
Co-Tuning + FixMatch 46.81±0.21 58.88±0.23 73.07±0.29 –

Self-Tuning (ours) 64.17±0.47 75.13±0.35 80.22±0.36 83.95±0.18

Stanford Cars

TL

Fine-Tuning (baseline) 36.77±0.12 60.63±0.18 75.10±0.21 87.20±0.19

L2-SP (Li et al., 2018) 36.10±0.30 60.30±0.28 75.48±0.22 86.58±0.26

DELTA (Li et al., 2019) 39.37±0.34 63.28±0.27 76.53±0.24 86.32±0.20

BSS (Chen et al., 2019) 40.57±0.12 64.13±0.18 76.78±0.21 87.63±0.27

Co-Tuning (You et al., 2020) 46.02±0.18 69.09±0.10 80.66±0.25 89.53±0.09

SSL

⇧-model (Laine & Aila, 2017) 45.19±0.21 57.29±0.26 64.18±0.29 –
Pseudo-Labeling (Lee, 2013) 40.93±0.23 67.02±0.19 78.71±0.30 –
Mean Teacher (Tarvainen & Valpola, 2017) 54.28±0.14 66.02±0.21 74.24±0.23 –
UDA (Xie et al., 2020) 39.90±0.43 64.16±0.40 71.86±0.56 –
FixMatch (Sohn et al., 2020) 49.86±0.27 77.54±0.29 84.78±0.33 –
SimCLRv2 (Chen et al., 2020b) 45.74±0.16 61.70±0.18 77.49±0.24 –

Combine
Co-Tuning + Pseudo-Labeling 50.16±0.23 73.76±0.26 83.33±0.34 –
Co-Tuning + Mean Teacher 52.98±0.19 71.42±0.24 75.38±0.29 –
Co-Tuning + FixMatch 42.34±0.19 73.24±0.25 83.13±0.34 –

Self-Tuning (ours) 72.50±0.45 83.58±0.28 88.11±0.29 90.67±0.23

FGVC Aircraft

TL

Fine-tuning (baseline) 39.57±0.20 57.46±0.12 67.93±0.28 81.13±0.21

L2-SP (Li et al., 2018) 39.27±0.24 57.12±0.27 67.46±0.26 80.98±0.29

DELTA (Li et al., 2019) 42.16±0.21 58.60±0.29 68.51±0.25 80.44±0.20

BSS (Chen et al., 2019) 40.41±0.12 59.23±0.31 69.19±0.13 81.48±0.18

Co-Tuning (You et al., 2020) 44.09±0.67 61.65±0.32 72.73±0.08 83.87±0.09

SSL

⇧-model (Laine & Aila, 2017) 37.32±0.25 58.49±0.26 65.63±0.36 –
Pseudo-Labeling (Lee, 2013) 46.83±0.30 62.77±0.31 73.21±0.39 –
Mean Teacher (Tarvainen & Valpola, 2017) 51.59±0.23 71.62±0.29 80.31±0.32 –
UDA (Xie et al., 2020) 43.96±0.45 64.17±0.49 67.42±0.53 –
FixMatch (Sohn et al., 2020) 55.53±0.26 71.35±0.35 78.34±0.43 –
SimCLRv2 (Chen et al., 2020b) 40.78±0.21 59.03±0.29 68.54±0.30 –

Combine
Co-Tuning + Pseudo-Labeling 49.15±0.32 65.62±0.34 74.57±0.40 –
Co-Tuning + Mean Teacher 51.46±0.25 64.30±0.28 70.85±0.35 –
Co-Tuning + FixMatch 53.74±0.23 69.91±0.26 80.02±0.32 –

Self-Tuning (ours) 64.11±0.32 76.03±0.25 81.22±0.29 84.28±0.14

Ximei Wang (Tsinghua University) Self-Tuning July 10, 2021 11 / 12

Summary

A new setup named data-efficient deep learning to unleash the power of both transfer
learning and semi-supervised learning.

To tackle model shift and confirmation bias problems, we propose Self-Tuning to unify
the exploration of labeled and unlabeled data and the transfer of a pre-trained model.

A general Pseudo Group Contrast mechanism to mitigate the reliance on pseudo-labels
and boost the tolerance to false labels.

Comprehensive experiments demonstrate that Self-Tuning outperforms its SSL and TL
counterparts on five tasks by sharp margins.

Code will be available at @ github.com/thuml/Self-Tuning

Ximei Wang (Tsinghua University) Self-Tuning July 10, 2021 12 / 12

github.com/thuml/Self-Tuning

