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Methods OPs (⇥ 108) Top-1 Acc(%)
Real-to-Binary Baseline [3] 1.63 60.9
Our ReAct Baseline Net 0.87 61.1

XNORNet [29] 1.67 51.2
Bi-RealNet [23] 1.63 56.4

Real-to-Binary [3] 1.65 65.4
MeliusNet29 [2] 2.14 65.8

Our ReActNet-A 0.87 69.4

MeliusNet59 [2] 5.32 70.7
Our ReActNet-C 2.14 71.4

Table 3.
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Methods OPs (⇥108) Top-1 Acc(%)
Real-to-Binary Baseline [3] 1.63 60.9
Our ReAct Baseline Net 0.87 61.1

XNORNet [30] 1.67 51.2
Bi-RealNet [23] 1.63 56.4

Real-to-Binary [3] 1.65 65.4
MeliusNet29 [2] 2.14 65.8

Our ReActNet-A 0.87 69.4

MeliusNet59 [2] 5.32 70.7
Our ReActNet-C 2.14 71.4

Fig. 1. Computational cost vs. ImageNet Accuracy. Proposed ReActNets signif-
icantly outperform other binary neural networks. In particular, ReActNet-C achieves
state-of-the-art result with 71.4% top-1 accuracy but being 2.5⇥ more e�cient than
MeliusNet59. ReActNet-A exceeds Real-to-Binary Net and MeliusNet29 by 4.0% and
3.6% top-1 accuracy, respectively, and with more than 1.9⇥ computational reduction.
Details are described in Section 5.2.

Despite these attractive characteristics of 1-bit CNN, the severe accuracy
degradation prevents it from being broadly deployed. For example, a representa-
tive binary network, XNOR-Net [30] only achieves 51.2% accuracy on the Ima-
geNet classification dataset, leaving a ⇠ 18% accuracy gap from the real-valued
ResNet-18. Some preeminent binary networks [8,37] show good performance on
small datasets such as CIFAR10 and MNIST, but still encounter severe accuracy
drop when applied to a large dataset such as ImageNet.

In this study, our motivation is to further close the performance gap between
binary neural networks and real-valued networks on the challenging large-scale
datasets. We start with designing a high-performance baseline network. Inspired
by the recent advances in real-valued compact neural network design, we choose
MobileNetV1 [15] structure as our binarization backbone, which we believe is of
greater practical value than binarizing non-compact models. Following the in-
sights highlighted in [23], we adopt blocks with identity shortcuts which bypass
1-bit vanilla convolutions to replace the convolutions in MobileNetV1. Moreover,
we propose to use a concatenation of two of such blocks to handle the channel
number mismatch in the downsampling layers, as shown in Fig. 2(a). This base-
line network design not only helps avoid real-valued convolutions in shortcuts,
which e↵ectively reduces the computation to near half of that needed in preva-
lent binary neural networks [30,23,3], but also achieves a high top-1 accuracy of
61.1% on ImageNet.

To further enhance the accuracy, we investigate another aspect which has not
been studied in previous binarization or quantization works: activation distribu-
tion reshaping and shifting via non-linearity function design. We observed that
the overall activation value distribution a↵ects the feature representation, and
this e↵ect will be exaggerated by the activation binarization. A small distribu-
tion value shift near zero will cause the binarized feature map to have a disparate
appearance and in turn will influence the final accuracy. This observation will be
elaborated in Section 4.2. Enlightened by this observation, we propose a new gen-

ReActNet with our training strategy

In this work

• Enhance the performance of
state-of-the-art ReActNet
from 69.4% to 70.5%.

• Understand BNN optimization



Motivation

• Real-valued network: SGD > Adam, usually use SGD

• Binary neural network: Adam > SGD, more recent works use Adam

How Does Adam Help BNNs Optimization (ICML 2021)



Observation – loss landscape difference

• The actual optimization landscape from real-valued and BNNs
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Abstract
The best performing Binary Neural Networks
(BNNs) are usually attained using Adam optimiza-
tion and its multi-step training variants (Rastegari
et al., 2016; Liu et al., 2020). However, to the
best of our knowledge, few studies explore the
fundamental reasons why Adam is superior to
other optimizers like SGD for BNN optimization
or provide analytical explanations that support
specific training strategies. To address this, in
this paper we first investigate the trajectories of
gradients and weights in BNNs during the train-
ing process. We show the regularization effect
of second-order momentum in Adam is crucial
to revitalize the weights that are dead due to
the activation saturation in BNNs. We find that
Adam, through its adaptive learning rate strat-
egy, is better equipped to handle the rugged loss
surface of BNNs and reaches a better optimum
with higher generalization ability. Furthermore,
we inspect the intriguing role of the real-valued
weights in binary networks, and reveal the ef-
fect of weight decay on the stability and slug-
gishness of BNN optimization. Through exten-
sive experiments and analysis, we derive a simple
training scheme, building on existing Adam-based
optimization, which achieves 70.5% top-1 accu-
racy on the ImageNet dataset using the same ar-
chitecture as the state-of-the-art ReActNet (Liu
et al., 2020) while achieving 1.1% higher accu-
racy. Code and models are available at https:
//github.com/liuzechun/AdamBNN

1. Introduction
Binary Neural Networks (BNNs) have gained increasing
attention in recent years due to the high compression ra-
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(a) real networks (b) binary networks
Figure 1. The actual optimization landscape from real-valued and
binary networks with the same architecture (ResNet-18). We
follow the method in (Li et al., 2018) to plot the landscape.

tio (Rastegari et al., 2016) and the potential of being accel-
erated with logic computation on hardware (Zhang et al.,
2019). Their applications range from classification (Cour-
bariaux et al., 2016), to segmentation (Zhuang et al., 2019),
pose estimation (Bulat et al., 2019), and more.

Despite the high compression ratio of BNNs, the discrete na-
ture of the binary weights and activations poses a challenge
for its optimization. It is widely known that conventional
deep neural networks rely heavily on the ability to find good
optima in a highly non-convex optimizing space. Different
from real-valued neural networks, binary neural networks
restrict the weights and activations to discrete values (-1,
+1), which naturally, will limit the representational capacity
of the model and further result in disparate optimization
landscapes compared to real-valued ones. As illustrated
in Figure 1, BNNs are more chaotic and difficult for op-
timization with numerous local minima compared to real-
valued networks. These properties differentiate BNNs from
real-valued networks and impact the optimal optimizer and
training strategy design.

Since Courbariaux et al. (Courbariaux et al., 2016) adopted
Adam as the optimizer for BNNs, multiple researchers in-
dependently observed that better performance could be at-
tained by Adam optimization for BNNs (Bethge et al., 2020;
Liu et al., 2020; Brais Martinez, 2020). However, few of
these works have analyzed the reasons behind Adam’s su-
perior performance over other methods, especially the com-
monly used stochastic gradient descent (SGD) (Robbins &
Monro, 1951) with first momentum.

How Does Adam Help BNNs Optimization (ICML 2021)



• Forward pass – cause the discretized landscape

• Backward pass – cause the activation saturation and zero gradient issue

Activation binarization

Bi-Real Net: Enhancing the Performance of 1-bit CNNs 5

Fig. 2. The mechanism of xnor operation and bit-counting inside the 1-bit CNNs pre-
sented in [19].

while minimizing accuracy degradation. Successful attempts include DoReFa-
Net [33] and QNN [8], which explore neural networks trained with 1-bit weights
and 2-bit activations, and the accuracy drops by 6.1% and 4.9% respectively on
the ImageNet dataset compared to the real-valued AlexNet. Additionally, Bina-
ryNet [7] uses only 1-bit weights and 1-bit activations in a neural network and
achieves comparable accuracy as full-precision neural networks on the MNIST
and CIFAR-10 datasets. In XNOR-Net [19], Rastegari et al. further improve
BinaryNet by multiplying the absolute mean of the weight filter and activation
with the 1-bit weight and activation to improve the accuracy. ABC-Net [14]
proposes to enhance the accuracy by using more weight bases and activation
bases. The results of these studies are encouraging, but admittedly, due to the
loss of precision in weights and activations, the number of filters in the network
(thus the algorithm complexity) grows in order to maintain high accuracy, which
o↵sets the memory saving and speedup of binarizing the network.

In this study, we aim to design 1-bit CNNs aided with a real-valued shortcut
to compensate for the accuracy loss of binarization. Optimization strategies for
overcoming the gradient dismatch problem and discrete optimization di�culties
in 1-bit CNNs, along with a customized initialization method, are proposed to
fully explore the potential of 1-bit CNNs with its limited resolution.

3 Methodology

3.1 Standard 1-bit CNNs and Its Representational Capability

1-bit convolutional neural networks (CNNs) refer to the CNN models with bi-
nary weight parameters and binary activations in intermediate convolution lay-
ers. Specifically, the binary activation and weight are obtained through a sign
function,

ab = Sign(ar) =

⇢
�1 if ar < 0
+1 otherwise

, wb = Sign(wr) =

⇢
�1 if wr < 0
+1 otherwise

, (1)

where ar and wr indicate the real activation and the real weight, respectively.
ar exists in both training and inference process of the 1-bit CNN, due to the
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A. Subsection Heading Here

@Sign(ar)

@ar
⇡ @Clip(�1, ar, 1)

@ar
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0 otherwise
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(1)
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Activation saturation
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• SGD update:

• Adam update: !! = #!!"# + %!$

• Adam naturally leverages the accumulation in the second momentum 
to amplify the learning rate regarding the gradients with small 
historical values. 

Why Adam can alleviate activation saturation

How Does Adam Help BNNs Optimization (ICML 2021)
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(a) Real-valued network with SGD

SDAM=6.227e-3

(b) Binary network with SGD

SDAM=5.558e-3

(c) Binary network with Adam
Figure 4. The weight value distribution in the first binary convolutional layer after training one epoch. For clarity, we use red hyphens to
mark the Channel-wise Absolute Mean (CAM) of real-valued weights in each kernel. The grey dotted line denotes the minimum CAM
value (0.0306) of weights in the Adam optimized binary network. Compared to Adam, SGD optimization leads to much lower CAM
value, and higher Standard Deviation (SDAM), which indicates that the weights optimized with SGD are not as fair (well-trained) as those
with Adam. More detailed analysis can be found in Sec 3.2.3.

(a) Binary network with SGD (b) Binary network with Adam
Figure 5. The update value distribution of weights in the first binary convolutional layer after trained with one epoch. For clarity, we omit
the original update value distribution and use red hyphens to mark the Channel-wise Absolute Mean (CAM) of the weights’ update values
in each kernel. In this layer, 34.3% of the kernels in SGD has a lower CAM than the minimum CAM in Adam. See also Sec. 3.2.3.

with zero gradient at almost all input intervals, making the
landscape infeasible to be optimized with gradient descent.

In literature, the derivative of clip(�1, ar, 1) function is
always adopted as the approximation to the derivative of the
sign function. Thus, the actual landscape where gradients
are computed is constructed with clip nodes. In Figure 6 (b),
the approximated gradients of binary activations retain their
values in both direction only when both inputs lands in the
interval of [-1, 1], denoted as the slashed area in Figure 6 (b).
Outside this region, the gradient vector either has value in
only one direction or contains zero value in both directions,
which is the so-called flattened region.

During the actual BNN optimization, the activation value
depends on the input images and will vary from batch to
batch, which is likely to exceed [-1, 1]. This activation
saturation effect in turn results in the gradient vanishing
problem. For illustration, on this 2D-loss surface, we denote
the starting point of optimization in grey circles. Started
with the same sequence of gradients, the SGD optimizer
computes the update value with the first momentum by defi-
nition: vt = �vt�1 + gt, where gt denotes the gradient and
vt denotes the first momentum for weight update. While the
update value in Adam is defined as: ut =

v̂tp
m̂t+✏

, v̂t and

m̂t denote exponential moving averages of the gradient and
the squared gradient, respectively. At the flattened region,
with m̂t tracing the variance of gradients, the update value
ut is normalized to overcome the difference in the gradient
value. In contrast to SGD that only accumulates the first mo-
mentum, the adaptive optimizer, Adam, naturally leverages
the accumulation in the second momentum to amplify the
learning rate regarding the gradients with small historical
values. As shown in Figure 6 (c) and (d), Adam contains
higher proportion in update value of x direction compared
to SGD when the gradient in x direction vanishes. In our
experiments, we found this property crucial for optimizing
BNNs with more rugged surfaces and local flatten regions
due to binarization. Figure 5 also shows the update values
of each iteration with CAM form in training an actual BNN.
It confirms that with Adam training, the update values are
usually larger than a threshold but with SGD, the values
are very close to zero. As a result, “dead” weights from
saturation are easier to be re-activated by Adam than SGD.

3.2.4. PHYSICAL MEANING OF REAL-VALUED WEIGHT

The superiority of Adam for BNNs is also fortified in the
final accuracy. As shown in Figure 7 (a), Adam achieves
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problem. For illustration, on this 2D-loss surface, we denote
the starting point of optimization in grey circles. Started
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to SGD when the gradient in x direction vanishes. In our
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BNNs with more rugged surfaces and local flatten regions
due to binarization. Figure 5 also shows the update values
of each iteration with CAM form in training an actual BNN.
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SGD vs Adam

• SGD update:

• Adam update: 
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• Weight binarization and update process in the BNNs:

Role of real-valued weights
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Real-valued weights distribution

Visualization of final real-valued weights distribution in BNNs

High confidence

Low confidence
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• The role of weight decay in BNNs is tricky.

• In Real-valued network, weight decay prevents over-fitting

• In BNNs:

Another aspect in optimization: weight decay

Real-valued

Weights

Binary

Weights

Calculate Loss and Gradients

Update

Weight decay

How Does Adam Help BNNs Optimization (ICML 2021)



Weight decay: a dilemma in stability and
initialization dependency
• High weight decay:

Decrease the magnitude of real-valued weights

Thus, binary weights are easy to change the sign and unstable.

• Low weight decay:

Binary weights will be more stable to stay in the current status

Tend to be largely depend on the initial value.

How Does Adam Help BNNs Optimization (ICML 2021)



Two metrics to depict the effect

• FF ratio (optimization stability)

whether a weight changes its sign 
after the updating at tth iter.

• C2I ratio (correlation-to-initialization)

whether a weight has different sign to 
its initial sign.

How Does Adam Help BNNs Optimization (ICML 2021)



Disentangle the FF ratio and C2I ration

• Two step training:

(1) Step 1: Binarize activation, add weight decay
real-valued networks have no worry about the FF ratio

(2) Step 2: Binarize activation + weight, zero weight decay
Improve stability and utilize the good initialization from Step1 

How Does Adam Help BNNs Optimization (ICML 2021)



Experiments

• Dataset: imageNet

• Comparison with the state-
of-the-art BNNs.

How Do Adam and Training Strategies Help BNNs Optimization?

Table 2. Comparison with state-of-the-art methods that binarize
both weights and activations.

Networks Top1 Top5
Acc % Acc %

BNNs (Courbariaux et al., 2016) 42.2 67.1
ABC-Net (Lin et al., 2017) 42.7 67.6

DoReFa-Net (Zhou et al., 2016) 43.6 -
XNOR-ResNet-18 (Rastegari et al., 2016) 51.2 69.3

Bi-RealNet-18 (Liu et al., 2018b) 56.4 79.5
CI-BCNN-18 (Wang et al., 2019) 59.9 84.2

MoBiNet (Phan et al., 2020a) 54.4 77.5
BinarizeMobileNet (Phan et al., 2020b) 51.1 74.2

PCNN (Gu et al., 2019) 57.3 80.0
StrongBaseline (Brais Martinez, 2020) 60.9 83.0

Real-to-Binary Net (Brais Martinez, 2020) 65.4 86.2
MeliusNet29 (Bethge et al., 2020) 65.8 –

ReActNet ResNet-based (Liu et al., 2020) 65.5 86.1
ReActNet-A (Liu et al., 2020) 69.4 88.6

StrongBaseline + Our training strategy 63.2 84.0
ReActNet-A + Our training strategy 70.5 89.1

Table 3. Comparison of computational cost between the state-of-
the-art methods and our method.

Networks BOPs
⇥109

FLOPs
⇥108

OPs
⇥108

XNOR-ResNet-18 (Rastegari et al., 2016) 1.70 1.41 1.67
Bi-RealNet-18 (Liu et al., 2018b) 1.68 1.39 1.63
CI-BCNN-18 (Wang et al., 2019) – – 1.63
MeliusNet29 (Bethge et al., 2020) 5.47 1.29 2.14

StrongBaseline (Brais Martinez, 2020) 1.68 1.54 1.63
Real-to-Binary (Brais Martinez, 2020) 1.68 1.56 1.83

ReActNet-A (Liu et al., 2020) 4.82 0.12 0.87
StrongBaseline + Our training strategy 1.68 1.54 1.80

ReActNet-A + Our training strategy 4.82 0.12 0.87

4. Experiments
4.1. Dataset and Implementation Details

All the analytical experiments are conducted on the Ima-
geNet 2012 classification dataset (Russakovsky et al., 2015).
We train the network for 600K iterations with batch size
set to 512. The initial learning rate is set to 0.1 for SGD
and 0.0025 for Adam, with linear learning rate decay. We
also adopt the same data augmentation in (Brais Martinez,
2020) and the same knowledge distillation scheme as (Liu
et al., 2020) for training ReActNet structures. For a fair com-
parison of optimization effects, we use the same network
structures as StrongBaseline in (Brais Martinez, 2020) for
all the illustrative experiments and compared our training
strategy on two state-of-the-art network structures including
StrongBaseline, and ReActNet (Liu et al., 2020).

Table 4. Comparison of different binarization orders in two-step
training on the StrongBaseline (Brais Martinez, 2020) structure.

Top1 Acc Top5 Acc
first binarize weight 60.17 82.05then binarize activation (BWBA)

first binarize activation 63.23 84.02then binarize weight (BABW)

Table 5. Comparison between Adam and other adaptive methods.

Adam RMS-
prop

Ada-
Grad

Ada-
Delta

AMS-
Grad

Ada-
Bound

Top1-acc 61.49 57.90 50.74 56.90 60.71 58.13
Top5-acc 83.09 79.93 74.62 79.47 82.44 80.58

4.2. Comparison with State-of-the-Arts

Our training strategies bring constant improvements to both
structures. As shown in Table 2. With the same network
architecture, we achieve 2.3% higher accuracy than the
StrongBaseline (Brais Martinez, 2020). When applying our
training strategy to the state-of-the-art ReActNet (Liu et al.,
2020), it further brings 1.1% enhancement and achieves
70.5% top-1 accuracy, surpassing all previous BNN models.

Our training strategy will not increase the OPs as we
use identical structures as the baselines: StrongBase-
line (Brais Martinez, 2020) and ReActNet (Liu et al., 2020).
Table 3 shows the computational costs of the networks
we utilized in experiments. StrongBaseline is a ResNet-
18 based binary neural network, and it has similar OPs
as Bi-RealNet-18 (Liu et al., 2018b) and Real-to-Binary
Network (Brais Martinez, 2020). ReActNet is a MobileNet-
based BNN, and it contains small overall OPs than other
binary networks.

4.3. Ablation Study

4.3.1. COMPARISON OF ADAM AND SGD UNDER
DIFFERENT LEARNING RATES

In Figure 8, we illustrate the Top-1 accuracy curves with
different learning rates. To control variables, experiments
are done with one-step training strategy on ImageNet dataset
with the StrongBaseline (Brais Martinez, 2020) structure. In
general, Adam can achieve higher accuracy across a variety
of learning rate values and is also more robust than SGD.
Besides, we observe that Adam enjoys small learning rates.
The reason is that Adam adopts the adaptive method to
update the gradients, which will amplify the actual learning
rate values during training, so it requires a smaller initial
learning rate to avoid update values being too large.
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