How Do Adam and Training Strategies Help BNNs Optimization?

Zechun Liu*, Zhiqiang Shen*, Shichao Li, Koen Helwegen, Dong Huang, Kwang-Ting Cheng ICML 2021

In this work

• Enhance the performance of state-of-the-art ReActNet from 69.4% to 70.5%.

Understand BNN optimization

Motivation

- Real-valued network: SGD > Adam, usually use SGD
- Binary neural network: Adam > SGD, more recent works use Adam

Observation – loss landscape difference

The actual optimization landscape from real-valued and BNNs

Activation binarization

Forward pass – cause the discretized landscape

$$a_b = \operatorname{Sign}(a_r) = \begin{cases} -1 & \text{if } a_r < 0 \\ +1 & \text{otherwise} \end{cases}$$

Backward pass – cause the activation saturation and zero gradient issue

$$\frac{\partial Sign(a_r)}{\partial a_r} \approx \frac{\partial Clip(-1, a_r, 1)}{\partial a_r} = \begin{cases} 1 & -1 < a_r < 1 \\ 0 & \text{otherwise} \end{cases}$$

Activation saturation

Why Adam can alleviate activation saturation

• SGD update:
$$v_t = \gamma v_{t-1} + g_t$$

• Adam update:
$$u_t = \frac{\hat{v}_t}{\sqrt{\hat{m}_t} + \epsilon}$$
 $m_t = \beta m_{t-1} + g_t^2$

 Adam naturally leverages the accumulation in the second momentum to amplify the learning rate regarding the gradients with small historical values.

SGD vs Adam

• SGD update: $v_t = \gamma v_{t-1} + g_t$

• Adam update: $u_t = rac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}$

Role of real-valued weights

Weight binarization and update process in the BNNs:

Real-valued weights distribution

Visualization of final real-valued weights distribution in BNNs

Another aspect in optimization: weight decay

- The role of weight decay in BNNs is tricky.
- In Real-valued network, weight decay prevents over-fitting

Weight decay: a dilemma in stability and initialization dependency

High weight decay:

Decrease the magnitude of real-valued weights
Thus, binary weights are easy to change the sign and unstable.

• Low weight decay:

Binary weights will be more stable to stay in the current status Tend to be largely depend on the initial value.

Two metrics to depict the effect

 FF ratio (optimization stability) whether a weight changes its sign after the updating at tth iter.

$$egin{align} \mathbf{I_{FF}} &= rac{| ext{Sign}(w_{t+1}) - ext{Sign}(w_t)|_{abs}}{2}, \ \mathbf{FF_{ratio}} &= rac{\sum_{l=1}^{L} \sum_{w \in W_l} \mathbf{I_{FF}}}{N_{total}}, \end{gathered}$$

whether a weight has different sign to its initial sign.

• C2I ratio (correlation-to-initialization)
$$\mathbf{I_{C2I}} = \frac{|\mathrm{Sign}(w_{\mathrm{final}}) - \mathrm{Sign}(w_{\mathrm{init}})|_{abs}}{2},$$
 whether a weight has different sign to its initial sign.
$$\mathbf{C2I_{ratio}} = 1 - \frac{1}{2} \frac{\sum_{l=1}^{L} \sum_{w \in W_{l}} \mathbf{I_{C2I}}}{N_{\mathrm{total}}},$$

Disentangle the FF ratio and C2I ration

- Two step training:
 - (1) Step 1: Binarize activation, add weight decay real-valued networks have no worry about the FF ratio

(2) Step 2: Binarize activation + weight, zero weight decay Improve stability and utilize the good initialization from Step1

Experiments

Dataset: imageNet

• Comparison with the stateof-the-art BNNs.

Table 2. Comparison with state-of-the-art methods that binarize both weights and activations.

Networks	Top1	Top5
	Acc %	Acc %
BNNs (Courbariaux et al., 2016)	42.2	67.1
ABC-Net (Lin et al., 2017)	42.7	67.6
DoReFa-Net (Zhou et al., 2016)	43.6	-
XNOR-ResNet-18 (Rastegari et al., 2016)	51.2	69.3
Bi-RealNet-18 (Liu et al., 2018b)	56.4	79.5
CI-BCNN-18 (Wang et al., 2019)	59.9	84.2
MoBiNet (Phan et al., 2020a)	54.4	77.5
BinarizeMobileNet (Phan et al., 2020b)	51.1	74.2
PCNN (Gu et al., 2019)	57.3	80.0
StrongBaseline (Brais Martinez, 2020)	60.9	83.0
Real-to-Binary Net (Brais Martinez, 2020)	65.4	86.2
MeliusNet29 (Bethge et al., 2020)	65.8	_
ReActNet ResNet-based (Liu et al., 2020)	65.5	86.1
ReActNet-A (Liu et al., 2020)	69.4	88.6
StrongBaseline + Our training strategy	63.2	84.0
ReActNet-A + Our training strategy	70.5	89.1

Thank you

Zechun Liu*, Zhiqiang Shen*, Shichao Li, Koen Helwegen, Dong Huang, Kwang-Ting Cheng