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Training Deep Models is Increasingly More Expensive

Two Distinct Eras of Compute Usage in Training AI Systems
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Goal — Condensing Training Data
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Our goal is to condense a large training set T into a small synthetic set S such that the model
trained on the small synthetic set can obtain comparable testing performance to that trained
on the large training set.



Related Work — Dataset Condensation with Gradient Matchingl}
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[1] Dataset Condensation with Gradient Matching. Zhao et. al. ICLR 2021.




Problem: Dataset Condensation with Data Augmentation

Condensation Phase:
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Testing Phase:
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A” AS are traditional random augmentation.




Problem: Dataset Condensation with Data Augmentation

Train Synthetic Images Train Models Test
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Problem:
» Naive augmentation schemes lead to either performance drops or negligible gains.

Reason:

» The learned synthetic images have different characteristics from natural images.

« Simply applying random augmentation to real/synthetic images leads to averaged effects
which are difficult to disentangle.



Dataset Condensation with Differentiable Siamese Augmentation

Motivation: We aim to learn a synthetic training set that can be effectively used with data
augmentation to train deep neural networks.
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Benefits:

» Exploit more information from real/synthetic images.

« Sharing transformation enables learning prior knowledge (e.g. objects are usually horizontally
on the ground).



Experiments — Datasets & Settings

Datasets:
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Experimental Setting:

Stage 1: learn the condensed images (denoted as C)

Stage 2: train networks from scratch on the condensed images, then evaluate them on real
testing data (denoted as T)

We test our method with MLP, ConvNet (default), LeNet, AlexNet,VGG-11 and ResNet-18.

We investigate different settings: 1, 10 and 50 image/class learning.



Experiments — Effectiveness of DSA

We study the effect of design choices in the proposed DSA in terms of test performance on
CIFAR10 for 10 images/class learning.
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» Our DSA learns better synthetic images.
« Naive augmentation schemes lead to either performance drops or negligible gains.



Testing Performance (%)

Experiments — Comparison to SOTA
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* Outperform the state-of-the-art by a large margin (7% on CIFAR10).
* Obtain 99.2% testing accuracy on MNIST dataset with 50 synthetic images/class.

[1] Dataset Condensation with Gradient Matching. Zhao et al. ICLR 2021. (DC)
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Experiments — Visualization

from real from noise

Training iteration

»  Our method works well with both two kinds of initialization.
» The synthetic images inherit some contents from the initialization.
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Conclusion

Conclusion:

» enable learning synthetic training set that can be effectively used with data augmentation.
» achieve better performance (~7% improvement on CIFAR10/100) than SOTA.

« show promising results in continual learning and neural architecture search.

Future work:
« explore the use of condensed images in challenging datasets like ImageNet.
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Thank you for listening!
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