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Training Deep Models is Increasingly More Expensive 
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Source: “AI and Compute”, OpenAI 



Goal – Condensing Training Data 
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Condense 

Small synthetic set 

Our goal is to condense a large training set T into a small synthetic set S such that the model 

trained on the small synthetic set can obtain comparable testing performance to that trained 

on the large training set. 
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Related Work – Dataset Condensation with Gradient Matching[1]  
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[1] Dataset Condensation with Gradient Matching. Zhao et. al. ICLR 2021. 



Problem: Dataset Condensation with Data Augmentation 
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Condensation Phase: 

Testing Phase: 

AT 

AS 

AS* 

AT, AS are traditional random augmentation. 



Problem: Dataset Condensation with Data Augmentation 

6 

Problem: 

• Naive augmentation schemes lead to either performance drops or negligible gains. 

 

Reason: 

• The learned synthetic images have different characteristics from natural images. 

• Simply applying random augmentation to real/synthetic images leads to averaged effects 

which are difficult to disentangle. 

Train Synthetic Images Train Models Test 
Performance Real Synthetic Synthetic 

- - - 45.5±0.6 

- - AS* 46.9±0.6 

AT - AS* 42.8±0.7 

- AS AS* 44.6±0.7 

AT AS AS* 44.5±0.5 



Dataset Condensation with Differentiable Siamese Augmentation 
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Motivation: We aim to learn a synthetic training set that can be effectively used with data 

augmentation to train deep neural networks. 

Benefits: 

• Exploit more information from real/synthetic images. 

• Sharing transformation enables learning prior knowledge (e.g. objects are usually horizontally 

on the ground). 



Experiments – Datasets & Settings 

Experimental Setting: 

Stage 1: learn the condensed images (denoted as C) 

Stage 2: train networks from scratch on the condensed images, then evaluate them on real 

testing data (denoted as T) 

 

We test our method with MLP, ConvNet (default), LeNet, AlexNet,VGG-11 and ResNet-18. 

 

We investigate different settings: 1, 10 and 50 image/class learning. 

Datasets: 
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Experiments – Effectiveness of DSA 
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We study the effect of design choices in the proposed DSA in terms of test performance on 

CIFAR10 for 10 images/class learning. 

 

• Our DSA learns better synthetic images.  

• Naive augmentation schemes lead to either performance drops or negligible gains. 

Train Synthetic Images Train Models Test 
Performance Real Synthetic Synthetic 

- - - 45.5±0.6 

- - AS* 46.9±0.6 

AT - AS* 42.8±0.7 

- AS AS* 44.6±0.7 

AT AS AS* 44.5±0.5 

Aω (Shared) Aω (Shared) AS* 49.1±0.6 



Experiments – Comparison to SOTA 
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• Outperform the state-of-the-art by a large margin (7% on CIFAR10). 

• Obtain 99.2% testing accuracy on MNIST dataset with 50 synthetic images/class. 

[1] Dataset Condensation with Gradient Matching. Zhao et al. ICLR 2021. (DC) 
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Experiments – Visualization 
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• Our method works well with both two kinds of initialization. 

• The synthetic images inherit some contents from the initialization. 



Conclusion 

Conclusion: 

• enable learning synthetic training set that can be effectively used with data augmentation. 

• achieve better performance (~7% improvement on CIFAR10/100) than SOTA. 

• show promising results in continual learning and neural architecture search. 

 

Future work: 

• explore the use of condensed images in challenging datasets like ImageNet. 
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Project page : https://github.com/VICO-UoE/DatasetCondensation 
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Thank you for listening! 
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