Non-Negative Bregman Divergence Minimization for Deep Direct Density Ratio Estimation

Abstract

Density Ratio:

Density Ratio

$$r^*(x) = \frac{p(x)}{q(x)}$$

- The ratio of the two probability densities p(x) and q(x).
- The density ratio appears in many tasks in machine learning.
- Anomaly detection
- Domain adaptation etc.

Goal:

Density ratio estimation with deep neural networks.

Issue:

Train loss often diverges when we use neural networks.

Contributions:

- We detect the cause of this problem.
- We propose an empirical risk correction to mitigate this problem.
- Proposed method performs well in anomaly detection.

1. Density Ratio Estimation (DRE)

How to estimate the density ratio?:

Samples from two datasets:

$$\{x_j^{\text{nu}}\}_{j=1}^{n^{\text{nu}}} \sim p(x) \text{ and } \{x_i^{\text{de}}\}_{i=1}^{n^{\text{de}}} \sim q(x)$$

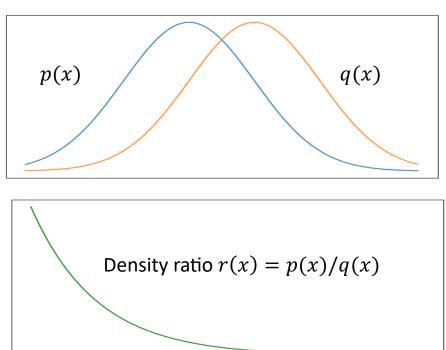
- A naive method is to estimate the probability densities separately.
- Then, we construct an estimator as their fraction: $\hat{r}(x) = \frac{\hat{p}(x)}{\hat{q}(x)}$.
- However, estimating the probability densities is not easy.
- \rightarrow Various methods for **direct DRE** have been proposed.
- Ex. Hastie et al., (2001), Gretton et al., (2009), etc.
- Sugiyama et al. (2011) unified them from the Bregman divergence (BD) minimization perspective.

Objective function of direct DRE with BD minimization:

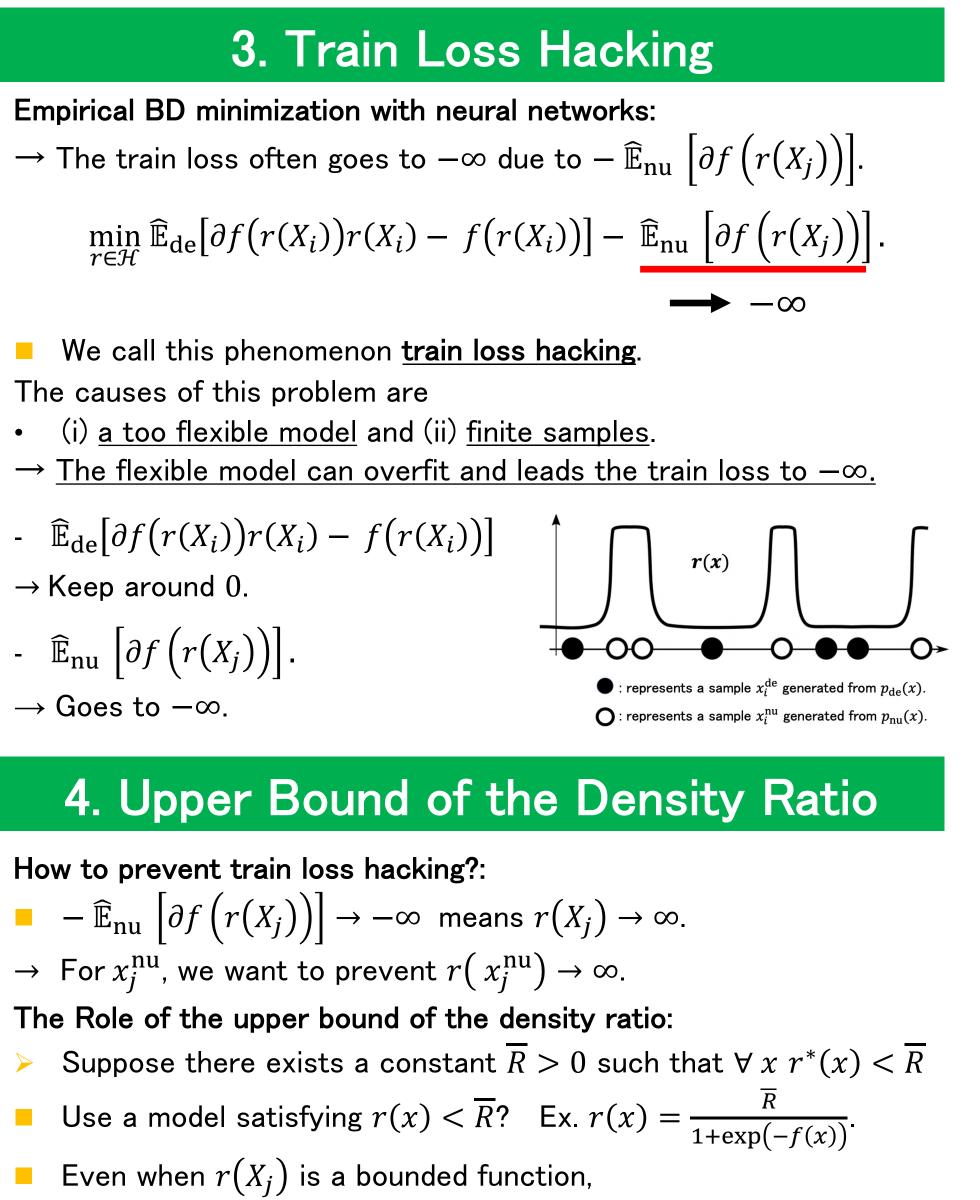
$$\widehat{\mathrm{BD}}_{f}(r) := \widehat{\mathbb{E}}_{\mathrm{de}} \Big[\partial f \Big(r(X_{i}) \Big) r(X_{i}) - f \Big(r(X_{i}) \Big) \Big] - \widehat{\mathbb{E}}_{\mathrm{nu}} \Big[\partial f \Big(r(X_{j}) \Big) \Big],$$

• $\widehat{\mathbb{E}}_{\mathrm{de}} \Big(\widehat{\mathbb{E}}_{\mathrm{nu}} \Big) :$ sample averages over $\{ x_{i}^{\mathrm{de}} \}_{i=1}^{n^{\mathrm{de}}} \sim q(x) \left(\{ x_{j}^{\mathrm{nu}} \}_{j=1}^{n^{\mathrm{de}}} \sim p(x) \right).$

• f(t) is a twice continuously differentiable convex function.


	Т	able 1. Summary of DRE methods (Sugiyama et a	al., 2011b). For PULogLoss,	we use $C <$	$\frac{1}{\overline{R}}$
--	---	---	-----------------------------	--------------	--------------------------

Method	f(t)	Lower bound of $\widehat{\mathrm{BD}}_f$	Reference
LSIF	$(t-1)^2/2$	Not bounded	Kanamori et al. (2009)
Kernel Mean Matching	$(t-1)^2/2$	Not bounded	Gretton et al. (2009)
UKL	$t\log(t)-t$	Not bounded	Nguyen et al. (2010)
KLIEP	$t\log(t)-t$	Not bounded	Sugiyama et al. (2008)
BKL (LR)	$t\log(t) - (1+t)\log(1+t)$	Bounded	Hastie et al. (2001)
PULogLoss	$C \log (1-t) + Ct (\log (t) - \log (1-t))$ for $0 < t < 1$	Not bounded	Kato et al. (2019)


Existing studies mainly estimate r^* with linear models.

 \leftrightarrow Recently, neural networks are shown to be effective in many tasks.

- Pdf of dataset A: p(x) - Pdf of dataset B: q(x)

Masahiro Kato, Cyberagent, Inc. Takeshi Teshima, The University of Tokyo

- $\partial f(r(X_j))$ sticks to the upper bound because it is monotonically increasing function
- Let C > 0 be a constant such that $C > 1/\overline{R}$
- Let us decompose the empirical BD as

$$\widehat{\mathbb{E}}_{de}\left[\partial f(r(X_i))r(X_i) - f(r(X_i))\right] - \widehat{\mathbb{E}}_{nu} \left[\partial f(r(X_j))\right] \\= \left(\widehat{\mathbb{E}}_{de}\left[\ell_1(r(X_i))\right] - C\widehat{\mathbb{E}}_{nu} \left[\ell_1(r(X_i))\right]\right) + \widehat{\mathbb{E}}_{nu} \left[\ell_2\left(r(X_j)\right)\right].$$

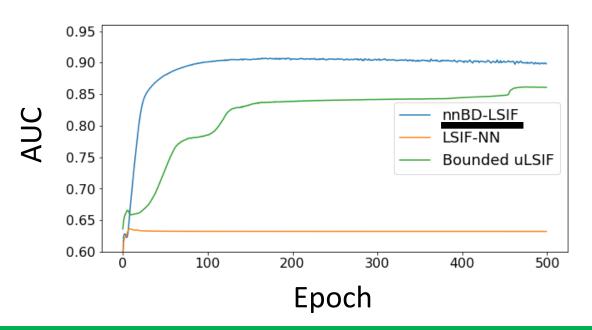
- $\ell_1(t)$ and $\ell_2(t)$ are components of empirical BD.
- If $r^*(x) < \overline{R}$,

$$\mathbb{E}_{de}[\ell_1(r(X_i))] - C\mathbb{E}_{nu}\left[\ell_1(r(X_i))\right]$$

becomes positive because

$$(x) - \frac{p(x)}{\overline{R}} = q(x) \left(1 - \frac{r^*(x)}{\overline{R}}\right) > 0 \ \forall \ x$$

holds from $r^*(x) < R$, $\ell_1(t) > 0$, and


$$\mathbb{E}_{de}[\ell_1(r(X_i))] - C\mathbb{E}_{nu}\left[\ell_1(r(X_i))\right] = \int \ell_1(r(X_i))\left(q(x) - \frac{p(x)}{\overline{R}}\right) dx > 0.$$

CyberAgent_®

5. Non-negative BD Minimization

Nonnegative BD (nnBD):

- We find the relationship between empirical BD and \overline{R} .
- \rightarrow Based on this finding, we propose the nonnegative correction:
- $\widehat{\mathrm{nnBD}}_f(r) = \left(\widehat{\mathbb{E}}_{\mathrm{de}}[\ell_1(r(X_i)] C\widehat{\mathbb{E}}_{\mathrm{nu}}\left[\ell_1(r(X_j)]\right]_+ + \widehat{\mathbb{E}}_{\mathrm{nu}}\left[\ell_2\left(r(X_j)\right)\right]\right].$
- $\ell_1(r(X))$ and $\ell_2(r(X))$ are components of empirical BD.
- \overline{R} : <u>The upper bound of the density ratio.</u>
- C is a constant such that $C > 1/\overline{R}$.
- \succ We call the corrected empirical BD nonnegative BD (nnBD).
- Direct DRE based on nnBD minimization: deep direct DRE (D3RE)
- D3RE significantly mitigates the train loss hacking problem. \succ

6. Experiments

Inlier-based outlier detection

- One of the settings of semi-supervised anomaly detection.
- Compute the AUROC for CIFAR-10 and FMNIST datasets.

CIFAR-10	uLSI	F-NN	nnBD	-LSIF	nnBl	D-PU	nnBD	-LSIF	nnBI	D-PU	Deep	SAD	G	Т
Network	Le	Net	LeNet LeNet		WRN		WRN		LeNet		WRN			
Inlier Class	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
plane	0.745	0.056	0.934	0.002	0.943	0.001	0.925	0.004	0.923	0.001	0.627	0.066	0.697	0.009
car	0.758	0.078	0.957	0.002	0.968	0.001	0.965	0.002	0.960	0.001	0.606	0.018	0.962	0.003
bird	0.768	0.012	0.850	0.007	0.878	0.004	0.844	0.004	0.858	0.004	0.404	0.006	0.752	0.002
cat	0.745	0.037	0.820	0.003	0.856	0.002	0.810	0.009	0.841	0.002	0.517	0.018	0.727	0.014
deer	0.758	0.036	0.886	0.004	0.909	0.002	0.864	0.008	0.872	0.002	0.704	0.052	0.863	0.014
dog	0.728	0.103	0.875	0.004	0.906	0.002	0.887	0.005	0.896	0.002	0.490	0.025	0.873	0.002
frog	0.750	0.060	0.944	0.003	0.958	0.001	0.948	0.004	0.948	0.001	0.744	0.014	0.879	0.008
horse	0.782	0.048	0.928	0.003	0.948	0.002	0.921	0.007	0.927	0.002	0.519	0.015	0.953	0.001
ship	0.780	0.048	0.958	0.003	0.965	0.001	0.964	0.002	0.957	0.001	0.430	0.062	0.921	0.009
truck	0.708	0.081	0.939	0.003	0.955	0.001	0.952	0.003	0.949	0.001	0.393	0.008	0.911	0.003
FMNIST	uLSI	C NINI	DD	TOTT										
				-LSIF		D-PU	nnBD			D-PU	Deep		G	
Network	Lel	Net	Lel	Net	Lel	Net	WI	RN	WI	RN	Lel	Net	WF	RN
Network Inlier Class	Lel Mean	Net SD	Lel Mean	Net SD	Lel Mean	Net SD	Wł Mean	RN SD	WI Mean	RN SD	Lel Mean	Net SD	WH Mean	RN SD
Network	Lel Mean 0.960	Net SD 0.005	Lel Mean 0.981	Net SD 0.001	Lel Mean 0.985	Net SD 0.000	WI Mean 0.984	RN SD 0.001	WI Mean 0.982	RN SD 0.000	Lel Mean 0.558	Net SD 0.031	WH Mean 0.890	RN SD 0.007
Network Inlier Class T-shirt/top Trouser	Lel Mean	Net SD	Lel Mean	Net SD 0.001 0.000	Lel Mean	Net SD	WH Mean 0.984 0.998	RN SD 0.001 0.000	WI Mean 0.982 0.998	RN SD 0.000 0.000	Lel Mean	Net SD	WH Mean	RN SD 0.007 0.004
Network Inlier Class T-shirt/top	Lel Mean 0.960	Net SD 0.005	Lel Mean 0.981	Net SD 0.001	Lel Mean 0.985	Net SD 0.000	WI Mean 0.984	RN SD 0.001	WI Mean 0.982	RN SD 0.000	Lel Mean 0.558	Net SD 0.031	WH Mean 0.890	RN 5D 0.007 0.004 0.005
Network Inlier Class T-shirt/top Trouser	Lel Mean 0.960 0.961	Net SD 0.005 0.010	Lel Mean 0.981 0.998	Net SD 0.001 0.000	Lel Mean 0.985 1.000	Net SD 0.000 0.000	WH Mean 0.984 0.998	RN SD 0.001 0.000	WI Mean 0.982 0.998	RN SD 0.000 0.000	Lel Mean 0.558 0.758	Net SD 0.031 0.022	WH Mean 0.890 0.974	RN 5D 0.007 0.004 0.005 0.014
Network Inlier Class T-shirt/top Trouser Pullover	Lel Mean 0.960 0.961 0.944	Net SD 0.005 0.010 0.012	Lel Mean 0.981 0.998 0.976	Net SD 0.001 0.000 0.001	Lel Mean 0.985 1.000 0.980	Net SD 0.000 0.000 0.001	WH Mean 0.984 0.998 0.983	RN SD 0.001 0.000 0.002	WI Mean 0.982 0.998 0.972	RN SD 0.000 0.000 0.001	Lel Mean 0.558 0.758 0.617	Net SD 0.031 0.022 0.046	WH Mean 0.890 0.974 0.902	RN 5D 0.007 0.004 0.005
Network Inlier Class T-shirt/top Trouser Pullover Dress	Lel Mean 0.960 0.961 0.944 0.973	Net SD 0.005 0.010 0.012 0.006	Lel Mean 0.981 0.998 0.976 0.986	Net SD 0.001 0.000 0.001 0.001	Lel Mean 0.985 1.000 0.980 0.992	Net SD 0.000 0.000 0.001 0.000	WH Mean 0.984 0.998 0.983 0.991	RN 5D 0.001 0.000 0.002 0.001	WH Mean 0.982 0.998 0.972 0.986	SD 0.000 0.000 0.001 0.000	Lel Mean 0.558 0.758 0.617 0.525	Net SD 0.031 0.022 0.046 0.038	WH Mean 0.890 0.974 0.902 0.843	RN 5D 0.007 0.004 0.005 0.014 0.003 0.005
Network Inlier Class T-shirt/top Trouser Pullover Dress Coat	Lel Mean 0.960 0.961 0.944 0.973 0.958	Net SD 0.005 0.010 0.012 0.006 0.006	Lel Mean 0.981 0.998 0.976 0.986 0.978	Net SD 0.001 0.000 0.001 0.001 0.001	Lel Mean 0.985 1.000 0.980 0.992 0.983	Net SD 0.000 0.000 0.001 0.000 0.000	WH Mean 0.984 0.998 0.993 0.991 0.981	RN 5D 0.001 0.000 0.002 0.001 0.002	WH Mean 0.982 0.998 0.972 0.986 0.974	SD 0.000 0.000 0.001 0.000 0.000	Lel Mean 0.558 0.758 0.617 0.525 0.627	Net SD 0.031 0.022 0.046 0.038 0.029	WH Mean 0.890 0.974 0.902 0.843 0.885	RN 5D 0.007 0.004 0.005 0.014 0.003 0.005 0.004
Network Inlier Class T-shirt/top Trouser Pullover Dress Coat Sandal	Lel Mean 0.960 0.961 0.944 0.973 0.958 0.968	Net SD 0.005 0.010 0.012 0.006 0.006 0.011	Lel Mean 0.981 0.998 0.976 0.986 0.978 0.997	Net SD 0.001 0.000 0.001 0.001 0.001 0.001	Lel Mean 0.985 1.000 0.980 0.992 0.983 0.999	Net SD 0.000 0.000 0.001 0.000 0.000 0.000	WH Mean 0.984 0.998 0.993 0.991 0.981 0.999	<u>SD</u> 0.001 0.000 0.002 0.001 0.002 0.000	WH Mean 0.982 0.998 0.972 0.986 0.974 0.999	RN 5D 0.000 0.000 0.001 0.000 0.000 0.000	Lel Mean 0.558 0.758 0.617 0.525 0.627 0.681	Net SD 0.031 0.022 0.046 0.038 0.029 0.023	WH Mean 0.890 0.974 0.902 0.843 0.885 0.949	RN 5D 0.007 0.004 0.005 0.014 0.003 0.005
Network Inlier Class T-shirt/top Trouser Pullover Dress Coat Sandal Shirt	Lel Mean 0.960 0.961 0.944 0.973 0.958 0.968 0.919	Net SD 0.005 0.010 0.012 0.006 0.006 0.011 0.005	Lel Mean 0.981 0.998 0.976 0.986 0.978 0.997 0.952	Net SD 0.001 0.000 0.001 0.001 0.001 0.001 0.001	Lel Mean 0.985 1.000 0.980 0.992 0.983 0.999 0.958	Net SD 0.000 0.000 0.001 0.000 0.000 0.000 0.001	WH Mean 0.984 0.998 0.993 0.991 0.981 0.999 0.944	SD 0.001 0.000 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001	WH Mean 0.982 0.998 0.972 0.986 0.974 0.999 0.932	SD 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Lel Mean 0.558 0.758 0.617 0.525 0.627 0.681 0.618	Net SD 0.031 0.022 0.046 0.038 0.029 0.023 0.015	WH Mean 0.890 0.974 0.902 0.843 0.885 0.949 0.842	RN SD 0.007 0.004 0.005 0.014 0.003 0.005 0.004

References

Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., and Schölkopf, B. Covariate shift by kernel mean matching. Dataset Machine Learning, 131-160 (2009), 01 2009.

and Friedman, J. The elements of statistical learning: data mining, inference and prediction. Springer, 2001 Hido, S., and Sugiyama, M. A least-squares approach to direct importance estimation. Journal of Machine Learning Research, 10(Jul.):1391–1445, 2009.

Niu, G., du Plessis, M. C., and Sugiyama, M. Positive-unlabeled learning with non-negative risk estimator. In NeurIPS, 2017 Sugiyama, M., Suzuki, T., and Kanamori, T. Density ratio matching under the bregman divergence: A unified frame-work of density ratio estimation. Annals of the Institute of Statistical Mathematics, 64, 10 2011b