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Episodic Finite-Horizon MDP
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Repeat H times
H: planning horizon / Episode length

state reward action

Agent

Environment

atst rt

st+1

!!"# ∼ # $ !!, &!
'! = ' !!, &!

A policy ! :
!: States S → Actions A , a = !(1)

Goal: maximize value function

V!(s") = 4 5" + 5# +⋯5$│1", !

Goal: given 0 < ? ≤ 1, find ! such that

4%!∼' F
∗ 1" − F! 1" ≤ ?

F∗ = F!∗ : value function of opt policy

F!:	value	function	of	policy !
Play K episodes in total



Reward-Free RL [Jin et al. 2020]
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Reward is unknown during interactions

state reward action

Agent

Environment

atst rt

st+1

!!"# ∼ # $ !!, &!
'! ∼ ' !!, &!

Exploration Phase:

Interacts with the environment and
collects a dataset:

K = 1)
*, L)

*
),* ,(",")
($,/)

Planning Phase:

Given an arbitrary reward 5(⋅,⋅),

compute a policy !:

4%!∼' F
∗ 1" − F! 1" ≤ ?

Sample Complexity:

Howmany episodes (S) needed?

Reward is defined by the user afterward
(depends on the collected data)



Motivations
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Batch Reinforcement Learning
• Existing results: if the collected dataset has a good coverage, we can compute a

near-optimal policy.
• Reward free RL: how to collect a dataset with good coverage?

Constrained Reinforcement Learning
• Reward functions are iteratively engineered to encourage desired behavior via trial

and error
• Don’t want to repeatedly interact with the environment.



Tabular Markov Decision Process
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Assumptions:
1. # of States ! < ∞
2. # of actions $ < ∞
3. Homogenous transition:
% ⋅ ⋅,⋅ is independent of ℎ

4. Bounded total rewards:
)) ≥ 0, ℎ = 1,… ,/
)* + )+ +⋯+ ), ≤ 3



Reward Scaling Assumptions
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Uniformly Bounded Reward
0 ≤ )) ≤ 1, ℎ = 1,… ,/

Uniformly Bounded Reward (Rescaled)
0 ≤ )) ≤ 1//, ℎ = 1,… ,/

Bounded Total Reward
)) ≥ 0, ℎ = 1,… ,/
)* + )+ +⋯+ ), ≤ 3

Benefit: can model sparse spiky reward
[Kakade 03, Jiang and Agarwal 18]

Total Reward: U => rescale ? = ?×U

Total Reward: 1 => right scaling
but per-step reward is tiny

? ∈ 0,1 : measures the performance relative to the total reward



Existing Results
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Paper Algorithm Sample Complexity

Brafman and Tenenholtz 2002 Rmax / ZeroRMax !!""#
$#

Jin Krishnamurthy Simchowitz Yu 2/2020 RF-RL-Explore !$""#
$"

Kaufmann Ménard Domingues
Jonsson Laurent Valko 6/2020 RF-UCRL !%""#

$"
Ménard Domingues Jonsson

Kaufmann Laurent Valko 7/2020 RF-Express !""#
$"

This work SSTP %%&
'%

Jin Krishnamurthy Simchowitz Yu 2/2020 Lower Bound %%&
'%

All bounds are in Big-O / Big-Omega and ignore logarithmic factors.



Main Result
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Under the bounded total reward assumption: 5) ≥ 0, for ℎ = 1,… ,U, and 5" +
5# +⋯+ 5$ ≤ 1, Staged Sampling + Truncated Planning (SSTP) solves reward-

free RL using at most [\(
0#1
2# ) episodes in the exploration phase.

• Reward-free Tabular RL is almost independent of the planning horizon:
• ]^_ ` bounds have been obtained in tabular RL: [Wang D. Yang Kakade 2020],

[Zhang Ji D. 2020]: ab( cdS + c#d) regret / ab(
01
2# +

0#1
2 ) sample complexity.

• Matches Ω(
0#1
2# ) lower bound up to logarithmic factors.



A Sufficient Condition
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Observation [Jin et al. 2020]:
Maximal expected visitation count:

f 1, L = max! 4 h 1, L ! ，0 ≤ f 1, L ≤ U

h 1, L : number of visitation in an episode.
• If in the dataset, for every 1, L pair, we have [hf(1, L) data with [h ∼ poly(c, U, 1/

?), then we can compute an ?-optimal policy with any (approximate) MDP solver.

Algorithm for exploration:
• For every state-action pair !, & :

• Set reward ' !, & = 1 and all other pair !$, &$ ≠ (!, &), ' !$, &$ = 0
• Run a SOTA algorithm for tabular RL (as blackbox) to collect as many (!, &) as possible.



A Tighter Sufficient Condition
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Observation [This work]:
If in the dataset, for every 1, L pair, we have [hf(1, L) data with [k ∼ l/m3 then
we can compute an ?-optimal policy with an optimistic planning algorithm.
• Planning algorithm: adding Bernstein bonus in dynamic programming.

f(1, L) is unknownQ1:



A Tighter Sufficient Condition (Cont’d)
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Discretization by doubling:
• n ×o = p" ∪p#⋯p4: 1, L ∈ p5 ⇒ f 1, L ~U/25. u = log#(U/?)
• Sufficient condition:

• For every !, & ∈ 4%, we have 5&,( 6 = Ω( )*+!,") where 5&,( 6 is the visitation counts of

(!, &) in the collected dataset 6.

How to collect a dataset that
satisfies this condition?Q2:



Staged Sampling
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Initialize v" = n×o
For w = 1,… ,u
• Set 5 1, L = 1 for all 1, L ∈ v5:
• Run a regret-minimization tabular algorithm with x episodes. For each episode:

• For !, & ∈ 9%, if 5 !, & ≥ )*
+!," where 5 !, & is the visitation count of !, & up to this

episode: set ' !, & = 0.
• Denote v56" = { 1, L ∈ v5, h 1, L < b(

7$
#$8%)},

Proof:
• Need: ; is large enough such that the algorithm guarantees to collect Ω( )*+!,") samples for < !, & ≥ *

+!.
• ChooseMVP in [Zhang Ji D. 2020] ( =>( ?@A + ?+@) regret for standard RL setting) as the algorithm.
• Use a reward-varying regret analysis.

=> ; = => )"-
," .



Conclusion
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New Algorithm: SSTP for Reward-free Reinforcement Learning
• Sample complexity: ab(c#d/?#).
• The sample complexity can be almost independent of planning horizon |.
• Matches Ω(c#d/?#) lower bound up to logarithmic factors.
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