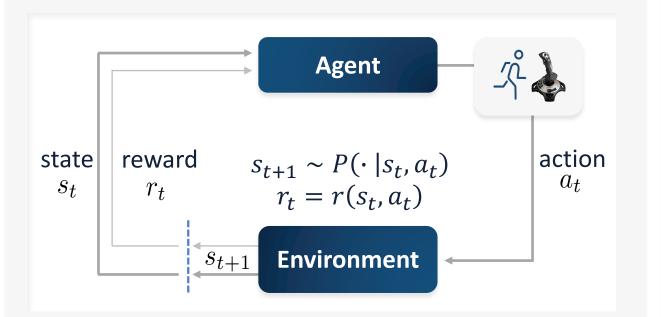
Nearly Optimal Reward-free Reinforcement Learning

Zihan Zhang Simon S. Du Xiangyang Ji

2021/7/21

Episodic Finite-Horizon MDP

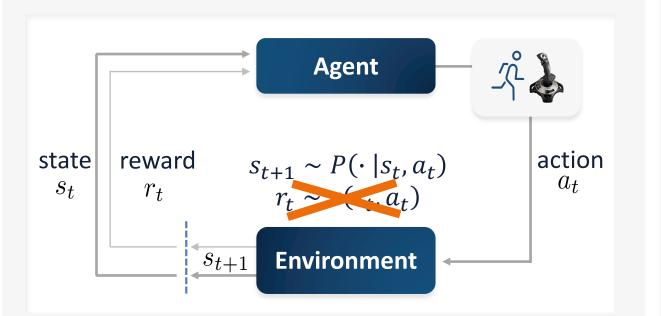


Repeat H times H: planning horizon / Episode length

Play K episodes in total

A policy π : π : States(S) \rightarrow Actions (A), a = $\pi(s)$ Goal: maximize value function $V^{\pi}(s_1) = \mathbb{E}[r_1 + r_2 + \cdots + r_H | s_1, \pi]$ Goal: given $0 < \epsilon \leq 1$, find π such that $\mathbb{E}_{s_1 \sim \mu}[V^*(s_1) - V^{\pi}(s_1)] \le \epsilon$ $V^* = V^{\pi^*}$: value function of opt policy V^{π} : value function of policy π

Reward-Free RL [Jin et al. 2020]



Reward is unknown during interactions

Reward is defined by the user afterward (depends on the collected data)

Exploration Phase:

Interacts with the environment and collects a dataset: $\mathcal{D} = \{(s_h^k, a_h^k)\}_{(h,k)=(1,1)}^{(H,K)}$

Planning Phase:

Given an arbitrary reward $r(\cdot, \cdot)$, compute a policy π : $\mathbb{E}_{s_1 \sim \mu}[V^*(s_1) - V^{\pi}(s_1)] \leq \epsilon$

Sample Complexity:

How many episodes (*K*) needed?

Motivations

Batch Reinforcement Learning

- Existing results: if the collected dataset has a **good coverage**, we can compute a near-optimal policy.
- Reward free RL: how to collect a dataset with good coverage?

Constrained Reinforcement Learning

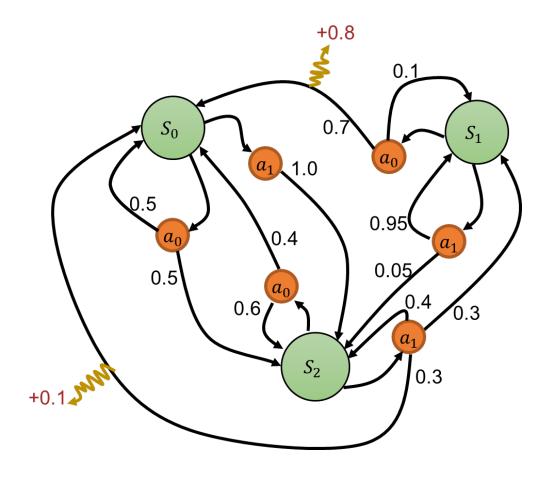
- Reward functions are iteratively engineered to encourage desired behavior via trial and error
- Don't want to repeatedly interact with the environment.

Tabular Markov Decision Process

Assumptions:

- 1. # of States $S < \infty$
- 2. # of actions $A < \infty$
- 3. Homogenous transition: $P(\cdot | \cdot, \cdot)$ is independent of h
- 4. Bounded total rewards:

 $\begin{aligned} r_h &\geq 0, h = 1, \dots, H \\ r_1 + r_2 + \dots + r_H &\leq \mathbf{1} \end{aligned}$



Reward Scaling Assumptions

 $\epsilon \in (0,1)$: measures the performance relative to the **total reward**

Uniformly Bounded Reward

 $0 \leq r_h \leq 1, h = 1, \dots, H$

Total Reward: $H \Rightarrow$ rescale $\epsilon = \epsilon \times H$

Uniformly Bounded Reward (Rescaled) $0 \le r_h \le 1/H, h = 1, ..., H$

Bounded Total Reward

$$r_h \ge 0, h = 1, \dots, H$$

$$r_1 + r_2 + \dots + r_H \le \mathbf{1}$$

Total Reward: 1 => right scaling but per-step reward is tiny

Benefit: can model sparse spiky reward [Kakade 03, Jiang and Agarwal 18]

Existing Results

Paper	Algorithm	Sample Complexity
Brafman and Tenenholtz 2002	Rmax / ZeroRMax	$\frac{H^8 S^2 A}{\epsilon^3}$
Jin Krishnamurthy Simchowitz Yu 2/2020	RF-RL-Explore	$\frac{H^3S^2A}{\epsilon^2}$
Kaufmann Ménard Domingues Jonsson Laurent Valko 6/2020	RF-UCRL	$\frac{H^2 S^2 A}{\epsilon^2}$
Ménard Domingues Jonsson Kaufmann Laurent Valko 7/2020	RF-Express	$\frac{HS^2A}{\epsilon^2}$
This work	SSTP	$\frac{S^2A}{\epsilon^2}$
Jin Krishnamurthy Simchowitz Yu 2/2020	Lower Bound	$\frac{S^2A}{\epsilon^2}$

All bounds are in Big-O / Big-Omega and ignore logarithmic factors.

Main Result

Under the bounded total reward assumption: $r_h \ge 0$, for h = 1, ..., H, and $r_1 + r_2 + \cdots + r_H \le 1$, Staged Sampling + Truncated Planning (**SSTP**) solves reward-free RL using at most $\tilde{O}(\frac{S^2A}{\epsilon^2})$ episodes in the exploration phase.

- Matches $\Omega(\frac{S^2 A}{\epsilon^2})$ lower bound up to logarithmic factors.
- Reward-free Tabular RL is almost independent of the planning horizon:
 - **log H** bounds have been obtained in tabular RL: [Wang D. Yang Kakade 2020], [Zhang Ji D. 2020]: $\tilde{O}(\sqrt{SAK} + S^2A)$ regret / $\tilde{O}(\frac{SA}{\epsilon^2} + \frac{S^2A}{\epsilon})$ sample complexity.

A Sufficient Condition

Observation [Jin et al. 2020]:

Maximal expected visitation count:

$$\lambda(s,a) = \max_{\pi} \mathbb{E}[N(s,a) \mid \pi], \ 0 \le \lambda(s,a) \le H$$

N(s, a): number of visitation in an episode.

• If in the dataset, for every (s, a) pair, we have $\tilde{N}\lambda(s, a)$ data with $\tilde{N} \sim \text{poly}(S, H, 1/\epsilon)$, then we can compute an ϵ -optimal policy with any (approximate) MDP solver.

Algorithm for exploration:

- For every state-action pair (*s*, *a*):
 - Set reward r(s, a) = 1 and all other pair $(s', a') \neq (s, a), r(s', a') = 0$
 - Run a SOTA algorithm for tabular RL (as blackbox) to collect as many (*s*, *a*) as possible.

A Tighter Sufficient Condition

Observation [This work]:

If in the dataset, for every (s, a) pair, we have $\tilde{N}\lambda(s, a)$ data with $\tilde{N} \sim S/\epsilon^2$ then we can compute an ϵ -optimal policy with an **optimistic planning algorithm**.

• Planning algorithm: adding **Bernstein bonus** in dynamic programming.

 $\lambda(s, a)$ is unknown

A Tighter Sufficient Condition (Cont'd)

Discretization by doubling:

- $\mathcal{S} \times \mathcal{A} = \mathcal{X}_1 \cup \mathcal{X}_2 \cdots \mathcal{X}_M : (s, a) \in \mathcal{X}_i \Rightarrow \lambda(s, a) \sim H/2^i. M = \log_2(H/\epsilon)$
- Sufficient condition:
 - For every $(s, a) \in \mathcal{X}_i$, we have $N_{s,a}(\mathcal{D}) = \Omega(\frac{SH}{2^i \epsilon^2})$ where $N_{s,a}(\mathcal{D})$ is the visitation counts of (s, a) in the collected dataset \mathcal{D} .

How to collect a dataset that satisfies this condition?

Staged Sampling

Initialize $\mathcal{Y}_1 = \mathcal{S} \times \mathcal{A}$ For i = 1, ..., M

• Set r(s, a) = 1 for all $(s, a) \in \mathcal{Y}_i$:

- Run a regret-minimization tabular algorithm with *n* episodes. For each episode:
 - For $(s, a) \in \mathcal{Y}_i$, if $N(s, a) \ge \frac{SH}{2^i \epsilon^2}$ where N(s, a) is the visitation count of (s, a) up to this episode: set r(s, a) = 0.
- Denote $\mathcal{Y}_{i+1} = \{(s, a) \in \mathcal{Y}_i, N(s, a) < O(\frac{SH}{2^i \epsilon^2})\},\$

Proof:

- Need: *n* is large enough such that the algorithm guarantees to collect $\Omega(\frac{SH}{2^i\epsilon^2})$ samples for $\lambda(s, a) \ge \frac{H}{2^i}$.
- Choose **MVP** in [Zhang Ji D. 2020] ($\tilde{O}(\sqrt{SAK} + S^2A)$ regret for standard RL setting) as the algorithm.
- Use a reward-varying regret analysis.

$$\Rightarrow n = \tilde{O}\left(\frac{S^2A}{\epsilon^2}\right).$$

Conclusion

New Algorithm: SSTP for Reward-free Reinforcement Learning

- Sample complexity: $\tilde{O}(S^2A/\epsilon^2)$.
- The sample complexity can be almost **independent** of planning horizon **H**.
- Matches $\Omega(S^2 A / \epsilon^2)$ lower bound up to logarithmic factors.

Thank You