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Clean Labels Dominate
• The label noise model can be formulated as

!𝑦! = $
𝑦! with probability (1 − 𝜂𝒙!)
𝑖, 𝑖 ∈ 𝑘 , 𝑖 ≠ 𝑦! with probability 𝜂𝒙!,$

.
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Figure 1. Illustrations of clean-labels-dominant and clean-labels-non-dominant cases.

!𝑦! = $
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𝑖, 𝑖 ∈ 𝑘 , 𝑖 ≠ 𝑦! with probability 𝜂𝒙!,$

.

• Assumption 1. The label noise model is clean-labels-dominant, i.e., ∀𝒙, 1 − 𝜂% > 𝑚𝑎𝑥
&'(

𝜂𝒙,& .



Asymmetric Loss Functions
• Definition 1. On the given weights 𝑤), … , 𝑤* ≥ 0, where ∃𝑡 ∈ [𝑘], s.t., 𝑤+ > 𝑚𝑎𝑥

$'+
𝑤$, a loss 

function 𝐿(𝒖, 𝑖) is called asymmetric if 𝐿 satisfies

where we always have 𝑎𝑟𝑔 𝑚𝑖𝑛
,

𝐿(𝒖, 𝑡) = 𝒆+.

arg min
𝒖

R
$.)

*

𝑤$𝐿(𝒖, 𝑖) = arg min
,

𝐿(𝒖, 𝑡) ,



Asymmetric Loss Functions
• Definition 1. On the given weights 𝑤), … , 𝑤* ≥ 0, where ∃𝑡 ∈ [𝑘], s.t., 𝑤+ > 𝑚𝑎𝑥

$'+
𝑤$, a loss 

function 𝐿(𝒖, 𝑖) is called asymmetric if 𝐿 satisfies

where we always have 𝑎𝑟𝑔 𝑚𝑖𝑛
,

𝐿(𝒖, 𝑡) = 𝒆+.

• Recall to the conditional 𝐿-risk 𝐿/ 𝑓 𝑥 , 𝑦 = 1 − 𝜂𝒙 𝐿 𝑓 𝒙 , 𝑦 + ∑$'( 𝜂𝒙,$𝐿(𝑓 𝒙 , 𝑖) . We 

have 1 − η𝐱 > max
1'2

η𝐱,1 according to Assumption 1.

arg min
𝒖

R
$.)

*

𝑤$𝐿(𝒖, 𝑖) = arg min
,

𝐿(𝒖, 𝑡) ,



Asymmetric Loss Functions
• Definition 1. On the given weights 𝑤), … , 𝑤* ≥ 0, where ∃𝑡 ∈ [𝑘], s.t., 𝑤+ > 𝑚𝑎𝑥

$'+
𝑤$, a loss 

function 𝐿(𝒖, 𝑖) is called asymmetric if 𝐿 satisfies

where we always have 𝑎𝑟𝑔 𝑚𝑖𝑛
,

𝐿(𝒖, 𝑡) = 𝒆+.

• Recall to the conditional 𝐿-risk 𝐿/ 𝑓 𝑥 , 𝑦 = 1 − 𝜂𝒙 𝐿 𝑓 𝒙 , 𝑦 + ∑$'( 𝜂𝒙,$𝐿(𝑓 𝒙 , 𝑖) . We 

have 1 − η𝐱 > max
1'2

η𝐱,1 according to Assumption 1.

• We define that 𝐿 is asymmetric on the label noise model satisfying Assumption 1, if ∀ 𝒙, 𝑦 , 𝐿 is 
asymmetric on 1 − 𝜂𝒙 ∪ 𝜂𝒙,$ $'(. 

arg min
𝒖

R
$.)

*

𝑤$𝐿(𝒖, 𝑖) = arg min
,

𝐿(𝒖, 𝑡) ,



Asymmetric Loss Functions
• Definition 1. On the given weights 𝑤), … , 𝑤* ≥ 0, where ∃𝑡 ∈ [𝑘], s.t., 𝑤+ > 𝑚𝑎𝑥

$'+
𝑤$, a loss 

function 𝐿(𝒖, 𝑖) is called asymmetric if 𝐿 satisfies

where we always have 𝑎𝑟𝑔 𝑚𝑖𝑛
,

𝐿(𝒖, 𝑡) = 𝒆+.

• Recall to the conditional 𝐿-risk 𝐿/ 𝑓 𝑥 , 𝑦 = 1 − 𝜂𝒙 𝐿 𝑓 𝒙 , 𝑦 + ∑$'( 𝜂𝒙,$𝐿(𝑓 𝒙 , 𝑖) . We 

have 1 − η𝐱 > max
1'2

η𝐱,1 according to Assumption 1.

• We define that 𝐿 is asymmetric on the label noise model satisfying Assumption 1, if ∀ 𝒙, 𝑦 , 𝐿 is 
asymmetric on 1 − 𝜂𝒙 ∪ 𝜂𝒙,$ $'(. 𝐿 is called completely asymmetric on any weights that 
contain a unique maximum. 

arg min
𝒖

R
$.)

*

𝑤$𝐿(𝒖, 𝑖) = arg min
,

𝐿(𝒖, 𝑡) ,



Asymmetric Loss Functions
• Definition 1. On the given weights 𝑤), … , 𝑤* ≥ 0, where ∃𝑡 ∈ [𝑘], s.t., 𝑤+ > 𝑚𝑎𝑥

$'+
𝑤$, a loss 

function 𝐿(𝒖, 𝑖) is called asymmetric if 𝐿 satisfies

where we always have 𝑎𝑟𝑔 𝑚𝑖𝑛
,

𝐿(𝒖, 𝑡) = 𝒆+.

• Recall to the conditional 𝐿-risk 𝐿/ 𝑓 𝑥 , 𝑦 = 1 − 𝜂𝒙 𝐿 𝑓 𝒙 , 𝑦 + ∑$'( 𝜂𝒙,$𝐿(𝑓 𝒙 , 𝑖) . We 

have 1 − η𝐱 > max
1'2

η𝐱,1 according to Assumption 1.

• We define that 𝐿 is asymmetric on the label noise model satisfying Assumption 1, if ∀ 𝒙, 𝑦 , 𝐿 is 
asymmetric on 1 − 𝜂𝒙 ∪ 𝜂𝒙,$ $'(. 𝐿 is called completely asymmetric on any weights that 

contain a unique maximum. 𝐿 is called strictly asymmetric, if ∑$*𝑤$𝐿(𝒖, 𝑖) < ∑$*𝑤$𝐿(𝒖′, 𝑖), 
∀𝒖, 𝒖3 ∈ 𝒞, 𝑢+ > 𝑢+′.

arg min
𝒖

R
$.)

*

𝑤$𝐿(𝒖, 𝑖) = arg min
,

𝐿(𝒖, 𝑡) ,



Properties of  Asymmetric Loss Functions
Theorem 1 (Classification calibration). Completely asymmetric loss functions are 
classification-calibrated.

(a) AGCE (b) AUL

Figure 2. Verification of classification calibration. Solid and dashed lines denote the curve of 𝐻ℓ(𝜂) and 𝐻ℓ#(𝜂)
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Asymmetry Ratio

Definition 2. Consider a loss function 𝐿 𝒖, 𝑖 = ℓ 𝑢% , the asymmetry ratio is defined as 
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AGCE, AUL, AEL
Corollary 1 (AGCE). On the given weights 𝑤), … , 𝑤2 ≥ 0, where 𝑤3 > 𝑤4 and 𝑤4 = 𝑚𝑎𝑥

%53

𝑤%, the loss function 𝐿8 𝒖, 𝑖 = 𝑎 + 1 8 − 𝑎 + 𝑢% 8 /𝑞 (where 𝑞 > 0, 𝑎 > 0) is 

asymmetric if and only if  𝒘𝒎𝒘𝒏
≥ 𝒂,𝟏

𝒂

𝟏;𝒒 ⋅ 𝕀 𝒒 ≤ 𝟏 + 𝕀 𝒒 > 𝟏 .

Corollary 2 (AUL). On the given weights 𝑤), … , 𝑤2 ≥ 0, where 𝑤3 > 𝑤4 and 𝑤4 = 𝑚𝑎𝑥
%53

𝑤%, the loss function 𝐿= 𝒖, 𝑖 = 𝑎 − 𝑢% = − 𝑎 − 1 = /𝑝 (where 𝑝 > 0, 𝑎 > 1) is 

asymmetric if and only if  𝒘𝒎𝒘𝒏
≥ 𝒂

𝒂"𝟏

𝒑;𝟏
⋅ 𝕀 𝒑 ≥ 𝟏 + 𝕀 𝒑 < 𝟏 .

Corollary 3 (AEL). On the given weights 𝑤), … , 𝑤2 ≥ 0, where 𝑤3 > 𝑤4 and 𝑤4 = 𝑚𝑎𝑥
%53

𝑤%, the exponential loss function 𝐿= 𝒖, 𝑖 = exp(−𝑢%/𝑎) (where 𝑎 > 0) is asymmetric if 
and only if  𝒘𝒎

𝒘𝒏
≥ 𝐞𝐱𝐩(𝟏

𝒂
).
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