Asymmetric Loss Functions for Learning with Noisy Labels

Xiong Zhou^{1 2}, Xianming Liu^{1 2}, Junjun Jiang^{1 2} Xin Gao^{2 3}, Xiangyang Ji⁴

¹ Harbin Institute of Technology

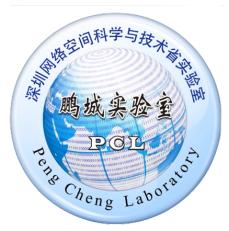
² Peng Cheng Laboratory

ICML | 2021

Thirty-eighth International Conference on Machine Learning

³ King Abdullah University of Science and Technology

⁴ Tsinghua University


July 18-25, 2021

ТСМІ

International Conferer

On Machine Learning

Clean Labels Dominate

• The label noise model can be formulated as

$$\tilde{y}_n = \begin{cases} y_n \\ i, i \in [k], i \neq y_n \end{cases}$$

with probability $(1 - \eta_{x_n})$ with probability $\eta_{x_n,i}$

Clean Labels Dominate

• The label noise model can be formulated as

$$\tilde{y}_n = \begin{cases} y_n \\ i, i \in [k], i \neq y_n \end{cases}$$

with probability $(1 - \eta_{x_n})$ with probability $\eta_{x_n,i}$

• Assumption 1. The label noise model is clean-labels-dominant, i.e., $\forall x, 1 - \eta_x > \max_{j \neq y} \eta_{x,j}$.

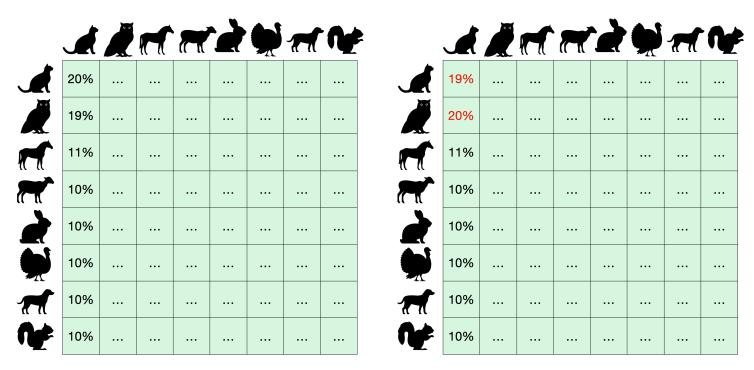


Figure 1. Illustrations of clean-labels-dominant and clean-labels-non-dominant cases.

• **Definition 1.** On the given weights $w_1, ..., w_k \ge 0$, where $\exists t \in [k]$, s.t., $w_t > \max_{i \neq t} w_i$, a loss function $L(\mathbf{u}, i)$ is called asymmetric if L satisfies

$$\arg\min_{\boldsymbol{u}}\sum_{i=1}^{\kappa}w_{i}L(\boldsymbol{u},i) = \arg\min_{\boldsymbol{u}}L(\boldsymbol{u},t),$$

• **Definition 1.** On the given weights $w_1, ..., w_k \ge 0$, where $\exists t \in [k]$, s.t., $w_t > \max_{i \neq t} w_i$, a loss function L(u, i) is called asymmetric if L satisfies

$$\arg \min_{\boldsymbol{u}} \sum_{i=1}^{\kappa} w_i L(\boldsymbol{u}, i) = \arg \min_{\boldsymbol{u}} L(\boldsymbol{u}, t),$$

where we always have $\underset{u}{arg \min L(u, t)} = e_t$.

• Recall to the conditional *L*-risk $L^{\eta}(f(x), y) = (1 - \eta_x)L(f(x), y) + \sum_{i \neq y} \eta_{x,i}L(f(x), i)$. We have $(1 - \eta_x) > \max_{i \neq y} \eta_{x,i}$ according to Assumption 1.

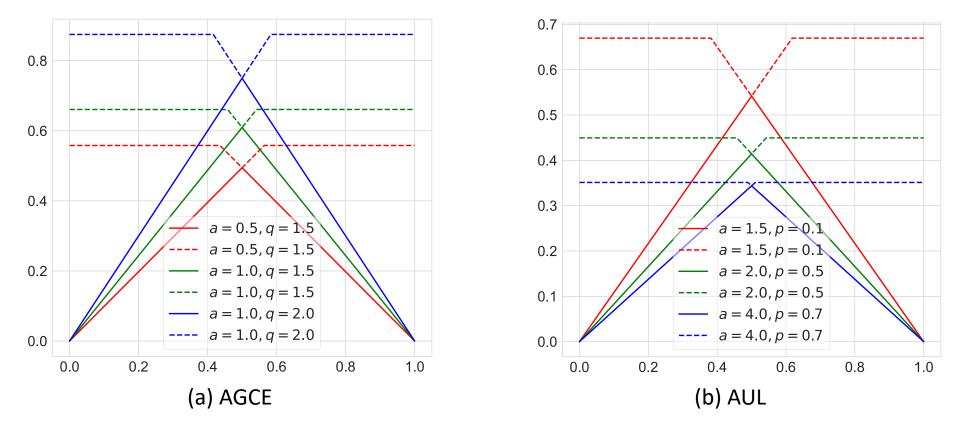
• **Definition 1.** On the given weights $w_1, ..., w_k \ge 0$, where $\exists t \in [k]$, s.t., $w_t > \max_{i \neq t} w_i$, a loss function L(u, i) is called asymmetric if L satisfies

$$\arg\min_{\boldsymbol{u}}\sum_{i=1}^{\kappa}w_{i}L(\boldsymbol{u},i) = \arg\min_{\boldsymbol{u}}L(\boldsymbol{u},t),$$

- Recall to the conditional *L*-risk $L^{\eta}(f(x), y) = (1 \eta_x)L(f(x), y) + \sum_{i \neq y} \eta_{x,i}L(f(x), i)$. We have $(1 \eta_x) > \max_{i \neq y} \eta_{x,i}$ according to Assumption 1.
- We define that *L* is *asymmetric* on the label noise model satisfying Assumption 1, if $\forall (x, y), L$ is asymmetric on $\{1 \eta_x\} \cup \{\eta_{x,i}\}_{i \neq y}$.

• **Definition 1.** On the given weights $w_1, ..., w_k \ge 0$, where $\exists t \in [k]$, s.t., $w_t > \max_{i \neq t} w_i$, a loss function $L(\mathbf{u}, i)$ is called asymmetric if L satisfies

$$\arg\min_{\boldsymbol{u}}\sum_{i=1}^{\kappa}w_{i}L(\boldsymbol{u},i) = \arg\min_{\boldsymbol{u}}L(\boldsymbol{u},t),$$


- Recall to the conditional *L*-risk $L^{\eta}(f(x), y) = (1 \eta_x)L(f(x), y) + \sum_{i \neq y} \eta_{x,i}L(f(x), i)$. We have $(1 \eta_x) > \max_{i \neq y} \eta_{x,i}$ according to Assumption 1.
- We define that *L* is *asymmetric* on the label noise model satisfying Assumption 1, if $\forall (x, y), L$ is asymmetric on $\{1 \eta_x\} \cup \{\eta_{x,i}\}_{i \neq y}$. *L* is called *completely asymmetric* on any weights that contain a unique maximum.

• **Definition 1.** On the given weights $w_1, ..., w_k \ge 0$, where $\exists t \in [k]$, s.t., $w_t > \max_{i \neq t} w_i$, a loss function L(u, i) is called asymmetric if L satisfies

$$\arg\min_{\boldsymbol{u}}\sum_{i=1}^{\kappa}w_{i}L(\boldsymbol{u},i) = \arg\min_{\boldsymbol{u}}L(\boldsymbol{u},t),$$

- Recall to the conditional *L*-risk $L^{\eta}(f(x), y) = (1 \eta_x)L(f(x), y) + \sum_{i \neq y} \eta_{x,i}L(f(x), i)$. We have $(1 \eta_x) > \max_{i \neq y} \eta_{x,i}$ according to Assumption 1.
- We define that *L* is *asymmetric* on the label noise model satisfying Assumption 1, if $\forall (x, y), L$ is asymmetric on $\{1 \eta_x\} \cup \{\eta_{x,i}\}_{i \neq y}$. *L* is called *completely asymmetric* on any weights that contain a unique maximum. *L* is called *strictly asymmetric*, if $\sum_{i}^{k} w_i L(u, i) < \sum_{i}^{k} w_i L(u', i), \forall u, u' \in C, u_t > u_t'$.

Theorem 1 (**Classification calibration**). *Completely asymmetric loss functions are classification-calibrated*.

Figure 2. Verification of classification calibration. Solid and dashed lines denote the curve of $H_{\ell}(\eta)$ and $H_{\ell}^{-}(\eta)$

Theorem 2 (Excess risk bound). An excess risk bound of a strictly and completely asymmetric loss function $L(u, i) = \ell(u_i)$ can be expressed as.

$$R_{\ell_{0-1}}(f) - R_{\ell_{0-1}}^* \leq \frac{2(R_{\ell}(f) - R_{\ell}^*)}{\ell(0) - \ell(1)},$$

where
$$R_{\ell_{0-1}}^* = \inf_f R_{\ell_{0-1}}(f)$$
, and $R_{\ell}^* = \inf_f R_{\ell}(f)$.

Theorem 2 (Excess risk bound). An excess risk bound of a strictly and completely asymmetric loss function $L(u, i) = \ell(u_i)$ can be expressed as.

$$R_{\ell_{0-1}}(f) - R_{\ell_{0-1}}^* \leq \frac{2(R_{\ell}(f) - R_{\ell}^*)}{\ell(0) - \ell(1)},$$

where
$$R_{\ell_{0-1}}^* = \inf_f R_{\ell_{0-1}}(f)$$
, and $R_{\ell}^* = \inf_f R_{\ell}(f)$.

Theorem 3. *Symmetric loss functions are completely asymmetric.*

Theorem 2 (Excess risk bound). An excess risk bound of a strictly and completely asymmetric loss function $L(u, i) = \ell(u_i)$ can be expressed as.

$$R_{\ell_{0-1}}(f) - R_{\ell_{0-1}}^* \leq \frac{2(R_{\ell}(f) - R_{\ell}^*)}{\ell(0) - \ell(1)},$$

where
$$R_{\ell_{0-1}}^* = \inf_f R_{\ell_{0-1}}(f)$$
, and $R_{\ell}^* = \inf_f R_{\ell}(f)$.

Theorem 3. *Symmetric loss functions are completely asymmetric.*

Theorem 4 (Noise tolerance). In a multi-classification problem, assuming that there exists a hypothesis $f \in \mathcal{H}, \forall (x, y), f$ minimizes L(f(x), y), then L is noise-tolerant if L is asymmetric on the label noise model.

Theorem 2 (Excess risk bound). An excess risk bound of a strictly and completely asymmetric loss function $L(u, i) = \ell(u_i)$ can be expressed as.

$$R_{\ell_{0-1}}(f) - R_{\ell_{0-1}}^* \leq \frac{2(R_{\ell}(f) - R_{\ell}^*)}{\ell(0) - \ell(1)},$$

where
$$R_{\ell_{0-1}}^* = \inf_f R_{\ell_{0-1}}(f)$$
, and $R_{\ell}^* = \inf_f R_{\ell}(f)$.

Theorem 3. *Symmetric loss functions are completely asymmetric.*

Theorem 4 (Noise tolerance). In a multi-classification problem, assuming that there exists a hypothesis $f \in \mathcal{H}, \forall (x, y), f$ minimizes L(f(x), y), then L is noise-tolerant if L is asymmetric on the label noise model.

Theorem 5. $\forall \alpha, \beta > 0$, *if* L_1 and L_2 are asymmetric, then $\alpha L_1 + \beta L_2$ is asymmetric.

Asymmetry Ratio

Definition 2. Consider a loss function $L(\mathbf{u}, i) = \ell(u_i)$, the asymmetry ratio is defined as

$$r(\ell) = \inf_{\substack{0 \le u_1, u_2 \le 1 \\ u_1 + u_2 = 1 \\ 0 \le \Delta u \le u_2}} \frac{\ell(u_1) - \ell(u_1 + \Delta u)}{\ell(u_2 - \Delta u) - \ell(u_2)} \le \inf_{\substack{0 \le u_1, u_2 \le 1 \\ u_1 + u_2 = 1}} \frac{\ell(u_1) - \ell(1)}{\ell(0) - \ell(u_2)} = r^u(\ell).$$

Asymmetry Ratio

Definition 2. Consider a loss function $L(\mathbf{u}, i) = \ell(u_i)$, the asymmetry ratio is defined as

$$r(\ell) = \inf_{\substack{0 \le u_1, u_2 \le 1 \\ u_1 + u_2 = 1 \\ 0 \le \Delta u \le u_2}} \frac{\ell(u_1) - \ell(u_1 + \Delta u)}{\ell(u_2 - \Delta u) - \ell(u_2)} \le \inf_{\substack{0 \le u_1, u_2 \le 1 \\ u_1 + u_2 = 1}} \frac{\ell(u_1) - \ell(1)}{\ell(0) - \ell(u_2)} = r^u(\ell).$$

Theorem 6 (Sufficiency). On the given weights $w_1, ..., w_k \ge 0$, where $w_m > w_n$ and $w_n = \max_{i \ne m} w_i$, the loss function $L(u, i) = \ell(u_i)$ is asymmetric if $\frac{w_m}{w_n} \cdot r(\ell) \ge 1$.

Theorem 7 (Necessity). On the given weights $w_1, ..., w_k \ge 0$, where $w_m > w_n$ and $w_n = \max_{i \ne m} w_i$, the loss function $L(u, i) = \ell(u_i)$ is asymmetric only if $\frac{w_m}{w_n} \cdot r^u(\ell) \ge 1$.

Asymmetry Ratio

Definition 2. Consider a loss function $L(\mathbf{u}, i) = \ell(u_i)$, the asymmetry ratio is defined as

$$r(\ell) = \inf_{\substack{0 \le u_1, u_2 \le 1 \\ u_1 + u_2 = 1 \\ 0 \le \Delta u \le u_2}} \frac{\ell(u_1) - \ell(u_1 + \Delta u)}{\ell(u_2 - \Delta u) - \ell(u_2)} \le \inf_{\substack{0 \le u_1, u_2 \le 1 \\ u_1 + u_2 = 1}} \frac{\ell(u_1) - \ell(1)}{\ell(0) - \ell(u_2)} = r^u(\ell).$$

Theorem 6 (Sufficiency). On the given weights $w_1, ..., w_k \ge 0$, where $w_m > w_n$ and $w_n = \max_{i \ne m} w_i$, the loss function $L(u, i) = \ell(u_i)$ is asymmetric if $\frac{w_m}{w_n} \cdot r(\ell) \ge 1$.

Theorem 7 (Necessity). On the given weights $w_1, ..., w_k \ge 0$, where $w_m > w_n$ and $w_n = \max_{i \ne m} w_i$, the loss function $L(u, i) = \ell(u_i)$ is asymmetric only if $\frac{w_m}{w_n} \cdot r^u(\ell) \ge 1$.

According to Theorem 6 and Theorem 8, when $r(\ell) = r^u(\ell)$, $\frac{w_m}{w_n} \cdot r(\ell) \ge 1$ will become

the necessary and sufficient condition for $L(\boldsymbol{u}, i) = \ell(u_i)$ to be asymmetric.

AGCE, AUL, AEL

Corollary 1 (AGCE). On the given weights $w_1, ..., w_k \ge 0$, where $w_m > w_n$ and $w_n = \max_{\substack{i \ne m}} w_i$ w_i , the loss function $L_a(u, i) = [(a + 1)^q - (a + u_i)^q]/q$ (where q > 0, a > 0) is asymmetric if and only if $\frac{w_m}{w_m} \ge \left(\frac{a+1}{a}\right)^{1-q} \cdot \mathbb{I}(q \le 1) + \mathbb{I}(q > 1).$ **Corollary 2** (AUL). On the given weights $w_1, ..., w_k \ge 0$, where $w_m > w_n$ and $w_n = \max_{\substack{i \ne m}} w_i$ w_i , the loss function $L_p(u, i) = [(a - u_i)^p - (a - 1)^p]/p$ (where p > 0, a > 1) is asymmetric if and only if $\frac{w_m}{w_n} \ge \left(\frac{a}{a-1}\right)^{p-1} \cdot \mathbb{I}(p \ge 1) + \mathbb{I}(p < 1).$

Corollary 3 (AEL). On the given weights $w_1, ..., w_k \ge 0$, where $w_m > w_n$ and $w_n = \max_{i \ne m} w_i$, the exponential loss function $L_p(\mathbf{u}, i) = \exp(-u_i/a)$ (where a > 0) is asymmetric if and only if $\frac{w_m}{w_n} \ge \exp(\frac{1}{a})$.

Experimental Results

Its (mean \pm std) are reported over 3 random runs and the top 3 best results are boldfaced .							
Datasets	Methods	Clean ($\eta = 0.0$)	Symmetric Noise Rate (η)				
Datasets			0.2	0.4	0.6	0.8	
	CE	99.15 ± 0.05	91.62 ± 0.39	73.98 ± 0.27	49.36 ± 0.43	22.66 ± 0.62	
	FL	99.13 ± 0.09	91.68 ± 0.14	74.54 ± 0.06	50.39 ± 0.28	22.65 ± 0.20	
	GCE	99.27 ± 0.05	98.86 ± 0.07	97.16 ± 0.03	81.53 ± 0.58	33.95 ± 0.82	
	NLNL	98.61 ± 0.13	98.02 ± 0.14	97.17 ± 0.09	95.42 ± 0.30	86.34 ± 1.43	
MAUGT	SCE	99.23 ± 0.10	98.92 ± 0.12	97.38 ± 0.15	88.83 ± 0.55	48.75 ± 1.5	
MNIST	NCE	98.60 ± 0.06	98.57 ± 0.01	98.29 ± 0.05	97.65 ± 0.08	93.78 ± 0.4	
	NCE+RCE	99.36 ± 0.05	$\textbf{99.14} \pm \textbf{0.03}$	98.51 ± 0.06	95.60 ± 0.21	74.00 ± 1.6	
	AUL	99.14 ± 0.05	$\textbf{99.05} \pm \textbf{0.09}$	$\textbf{98.90} \pm \textbf{0.09}$	$\textbf{98.67} \pm \textbf{0.04}$	$\textbf{96.73} \pm \textbf{0.2}$	
	AGCE	99.05 ± 0.11	$\textbf{98.96} \pm \textbf{0.10}$	$\textbf{98.83} \pm \textbf{0.06}$	$\textbf{98.57} \pm \textbf{0.12}$	96.59 ± 0.12	
	AEL	99.03 ± 0.05	98.93 ± 0.06	$\textbf{98.78} \pm \textbf{0.13}$	$\textbf{98.51} \pm \textbf{0.06}$	$\textbf{96.40} \pm \textbf{0.1}$	
	CE	90.48 ± 0.11	74.68 ± 0.25	58.26 ± 0.21	38.70 ± 0.53	19.55 ± 0.4	
	FL	89.82 ± 0.20	73.72 ± 0.08	57.90 ± 0.45	38.86 ± 0.07	19.13 ± 0.2	
	GCE	89.59 ± 0.26	87.03 ± 0.35	82.66 ± 0.17	67.70 ± 0.45	26.67 ± 0.5	
	SCE	91.61 ± 0.19	87.10 ± 0.25	79.67 ± 0.37	61.35 ± 0.56	28.66 ± 0.2	
CIFAR10	NLNL	90.73 ± 0.20	73.70 ± 0.05	63.90 ± 0.44	50.68 ± 0.47	29.53 ± 1.5	
	NCE	75.65 ± 0.26	72.89 ± 0.25	69.49 ± 0.39	62.64 ± 0.18	41.49 ± 0.6	
	NCE+RCE	90.87 ± 0.37	$\textbf{89.25} \pm \textbf{0.42}$	$\textbf{85.81} \pm \textbf{0.08}$	$\textbf{79.72} \pm \textbf{0.20}$	$\textbf{55.74} \pm \textbf{0.9}$	
	AUL	91.27 ± 0.12	89.21 ± 0.09	85.64 ± 0.19	78.86 ± 0.66	52.92 ± 1.2	
	AGCE	88.95 ± 0.22	86.98 ± 0.12	83.39 ± 0.17	76.49 ± 0.53	44.42 ± 0.7	
	AEL	86.38 ± 0.19	84.27 ± 0.12	81.12 ± 0.20	74.86 ± 0.22	51.41 ± 0.3	
	NCE+AUL	91.10 ± 0.13	$\textbf{89.31} \pm \textbf{0.20}$	$\textbf{86.23} \pm \textbf{0.18}$	$\textbf{79.70} \pm \textbf{0.08}$	$\textbf{59.44} \pm \textbf{1.1}$	
	NCE+AGCE	90.94 ± 0.12	$\textbf{89.21} \pm \textbf{0.08}$	$\textbf{86.19} \pm \textbf{0.15}$	$\textbf{80.13} \pm \textbf{0.18}$	50.82 ± 1.4	
	NCE+AEL	90.71 ± 0.04	88.57 ± 0.14	85.01 ± 0.38	77.33 ± 0.18	47.90 ± 1.2	
CIFAR100	CE	71.33 ± 0.43	56.51 ± 0.39	39.92 ± 0.10	21.39 ± 1.17	7.59 ± 0.2	
	FL	70.06 ± 0.70	55.78 ± 1.55	39.83 ± 0.43	21.91 ± 0.89	7.51 ± 0.0	
	GCE	63.09 ± 1.39	61.57 ± 1.06	56.11 ± 1.35	45.28 ± 0.61	17.42 ± 0.0	
	SCE	69.62 ± 0.42	52.25 ± 0.14	36.00 ± 0.69	20.14 ± 0.60	7.67 ± 0.6	
	NLNL	68.72 ± 0.60	46.99 ± 0.91	30.29 ± 1.64	16.60 ± 0.90	11.01 ± 2.4	
	NCE	29.96 ± 0.73	25.27 ± 0.32	19.54 ± 0.52	13.51 ± 0.65	8.55 ± 0.3	
	NCE+RCE	68.65 ± 0.40	64.97 ± 0.49	58.54 ± 0.13	45.80 ± 1.02	$\textbf{25.41} \pm \textbf{0.9}$	
	NCE+AUL	68.96 ± 0.16	$\textbf{65.36} \pm \textbf{0.20}$	$\textbf{59.25} \pm \textbf{0.23}$	$\textbf{46.34} \pm \textbf{0.21}$	23.03 ± 0.6	
	NCE+AGCE	69.03 ± 0.37	$\textbf{65.66} \pm \textbf{0.46}$	$\textbf{59.47} \pm \textbf{0.36}$	$\textbf{48.02} \pm \textbf{0.58}$	$\textbf{24.72} \pm \textbf{0.6}$	
	NCE+AEL	68.70 ± 0.20	$\textbf{65.36} \pm \textbf{0.14}$	$\textbf{59.51} \pm \textbf{0.03}$	$\textbf{46.94} \pm \textbf{0.07}$	$\textbf{24.48} \pm \textbf{0.2}$	

Table 1. Test accuracies (%) of different methods on benchmark datasets with clean or symmetric label noise ($\eta \in [0.2, 0.4, 0.6, 0.8]$). The results (mean±std) are reported over 3 random runs and the top 3 best results are **boldfaced**.

Table 2. Test accuracies (%) of different methods on benchmark datasets with asymmetric label noise ($\eta \in [0.1, 0.2, 0.3, 0.4]$). The sults (mean±std) are reported over 3 random runs and the top 3 best results are **boldfaced**.

Datasets	Methods	Asymmetric Noise Rate (η)				
Datasets	Wiethous	0.1	0.2	0.3	0.4	
	CE	97.57 ± 0.22	94.56 ± 0.22	88.81 ± 0.10	82.27 ± 0.40	
	FL	97.58 ± 0.09	94.25 ± 0.15	89.09 ± 0.25	82.13 ± 0.49	
	GCE	99.01 ± 0.04	96.69 ± 0.12	89.12 ± 0.24	81.51 ± 0.19	
	NLNL	98.63 ± 0.06	98.35 ± 0.01	97.51 ± 0.15	95.84 ± 0.26	
MNIST	SCE	$\textbf{99.14} \pm \textbf{0.04}$	98.03 ± 0.05	93.68 ± 0.43	85.36 ± 0.17	
WIND I	NCE	98.49 ± 0.06	98.18 ± 0.12	96.99 ± 0.17	94.16 ± 0.19	
	NCE+RCE	$\textbf{99.35} \pm \textbf{0.03}$	98.99 ± 0.22	97.23 ± 0.20	90.49 ± 4.04	
	AUL	$\textbf{99.15} \pm \textbf{0.09}$	$\textbf{99.15} \pm \textbf{0.02}$	$\textbf{98.98} \pm \textbf{0.05}$	$\textbf{98.62} \pm \textbf{0.09}$	
	AGCE	99.10 ± 0.02	$\textbf{99.07} \pm \textbf{0.09}$	$\textbf{98.95} \pm \textbf{0.03}$	$\textbf{98.44} \pm \textbf{0.11}$	
	AEL	98.99 ± 0.05	$\textbf{99.06} \pm \textbf{0.07}$	$\textbf{98.90} \pm \textbf{0.15}$	$\textbf{98.34} \pm \textbf{0.08}$	
	CE	87.55 ± 0.14	83.32 ± 0.12	79.32 ± 0.59	74.67 ± 0.38	
	FL	86.43 ± 0.30	83.37 ± 0.07	79.33 ± 0.08	74.28 ± 0.44	
	GCE	88.33 ± 0.05	85.93 ± 0.23	80.88 ± 0.38	74.29 ± 0.43	
	SCE	89.77 ± 0.11	86.20 ± 0.37	81.38 ± 0.35	75.16 ± 0.39	
CIFAR10	NLNL	88.54 ± 0.25	84.74 ± 0.08	81.26 ± 0.43	76.97 ± 0.52	
CIFARIO	NCE	74.06 ± 0.27	72.46 ± 0.32	69.86 ± 0.51	65.66 ± 0.42	
	NCE+RCE	$\textbf{90.06} \pm \textbf{0.13}$	$\textbf{88.45} \pm \textbf{0.16}$	$\textbf{85.42} \pm \textbf{0.09}$	$\textbf{79.33} \pm \textbf{0.15}$	
	AUL	$\textbf{90.19} \pm \textbf{0.16}$	88.17 ± 0.11	84.87 ± 0.04	56.33 ± 0.07	
	AGCE	88.08 ± 0.06	86.67 ± 0.14	83.59 ± 0.15	60.91 ± 0.20	
	AEL	85.22 ± 0.15	83.82 ± 0.15	82.43 ± 0.16	58.81 ± 3.62	
	NCE+AUL	90.05 ± 0.20	$\textbf{88.72} \pm \textbf{0.26}$	$\textbf{85.48} \pm \textbf{0.18}$	$\textbf{79.26} \pm \textbf{0.05}$	
	NCE+AGCE	$\textbf{90.35} \pm \textbf{0.15}$	$\textbf{88.48} \pm \textbf{0.16}$	$\textbf{85.96} \pm \textbf{0.24}$	$\textbf{80.00} \pm \textbf{0.44}$	
	NCE+AEL	89.95 ± 0.04	87.93 ± 0.06	84.81 ± 0.26	77.27 ± 0.11	
	CE	64.85 ± 0.37	58.11 ± 0.32	50.68 ± 0.55	40.17 ± 1.31	
	FL	64.78 ± 0.50	58.05 ± 0.42	51.15 ± 0.84	$\textbf{41.18} \pm \textbf{0.68}$	
	GCE	63.01 ± 1.01	59.35 ± 1.10	53.83 ± 0.64	40.91 ± 0.57	
CIFAR100	SCE	61.63 ± 0.84	53.81 ± 0.42	45.63 ± 0.07	36.43 ± 0.20	
	NLNL	59.55 ± 1.22	50.19 ± 0.56	42.81 ± 1.13	35.10 ± 0.20	
	NCE	27.59 ± 0.54	25.75 ± 0.50	24.28 ± 0.80	20.64 ± 0.40	
	NCE+RCE	66.38 ± 0.16	$\textbf{62.97} \pm \textbf{0.24}$	$\textbf{55.38} \pm \textbf{0.49}$	$\textbf{41.68} \pm \textbf{0.56}$	
	NCE+AUL	$\textbf{66.62} \pm \textbf{0.09}$	$\textbf{63.86} \pm \textbf{0.18}$	50.38 ± 0.32	38.59 ± 0.48	
	NCE+AGCE	$\textbf{67.22} \pm \textbf{0.12}$	$\textbf{63.69} \pm \textbf{0.19}$	$\textbf{55.93} \pm \textbf{0.38}$	$\textbf{43.76} \pm \textbf{0.70}$	
	NCE+AEL	66.92 ± 0.22	62.50 ± 0.23	$\textbf{52.42} \pm \textbf{0.98}$	39.99 ± 0.12	

Table 3. Top-1 validation accuracies (%) on WebVision validation set using different loss functions.

					NCE+AGCE	AGCE
Acc	66.96	61.76	66.92	66.32	67.12	69.40

Thanks for your attention!

Any question? Please contact us!

Xiong Zhou: <u>cszx@hit.edu.cn</u> Xianming Liu: <u>csxm@hit.edu.cn</u>