Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting

Kashif Rasul^{*} • Calvin Seward • Ingmar Schuster • **Roland Vollgraf** Zalando Research @ ICML 2021

ˈkashif.rasul@zalando.de

1/10

Neural Probabilistic Forecasts

- Probabilistic forecasts account for uncertainty
- Individual time series can be statistically dependant
- Model needs to account for this via **multivariate forecasts**
 - e.g. in traffic flow a disruption will ripple to nearby streets etc.
 - can resort to low-rank approximation or diagonal distribution
 - can use normalizing flows or GANs



Diffusion Models (<u>Sohl-Dickstein</u> <u>et al. 2015)</u>

• A class of latent variable models for $\mathbf{x}^0 \in \mathbb{R}^D$ with $\mathbf{x}^0 \sim q(\mathbf{x}^0)$:

$$p_{ heta}(\mathbf{x}^0) := \int p_{ heta}(\mathbf{x}^{0:N}) \, d\mathbf{x}^{1:N}$$

- N latents: $\mathbf{x}^1, \dots, \mathbf{x}^N \in \mathbb{R}^D$
- **Fixed** diffusion (forward) process is a Markov chain that adds noise via given β_1,\ldots,β_N , with $\beta_n\in[0,1]$:

$$q(\mathbf{x}^n|\mathbf{x}^{n-1}):=\mathcal{N}(\mathbf{x}^n;\sqrt{1-eta_n}\mathbf{x}^{n-1},eta_n)$$

 $_{l}\mathbf{I})$

4/10

Reverse Process

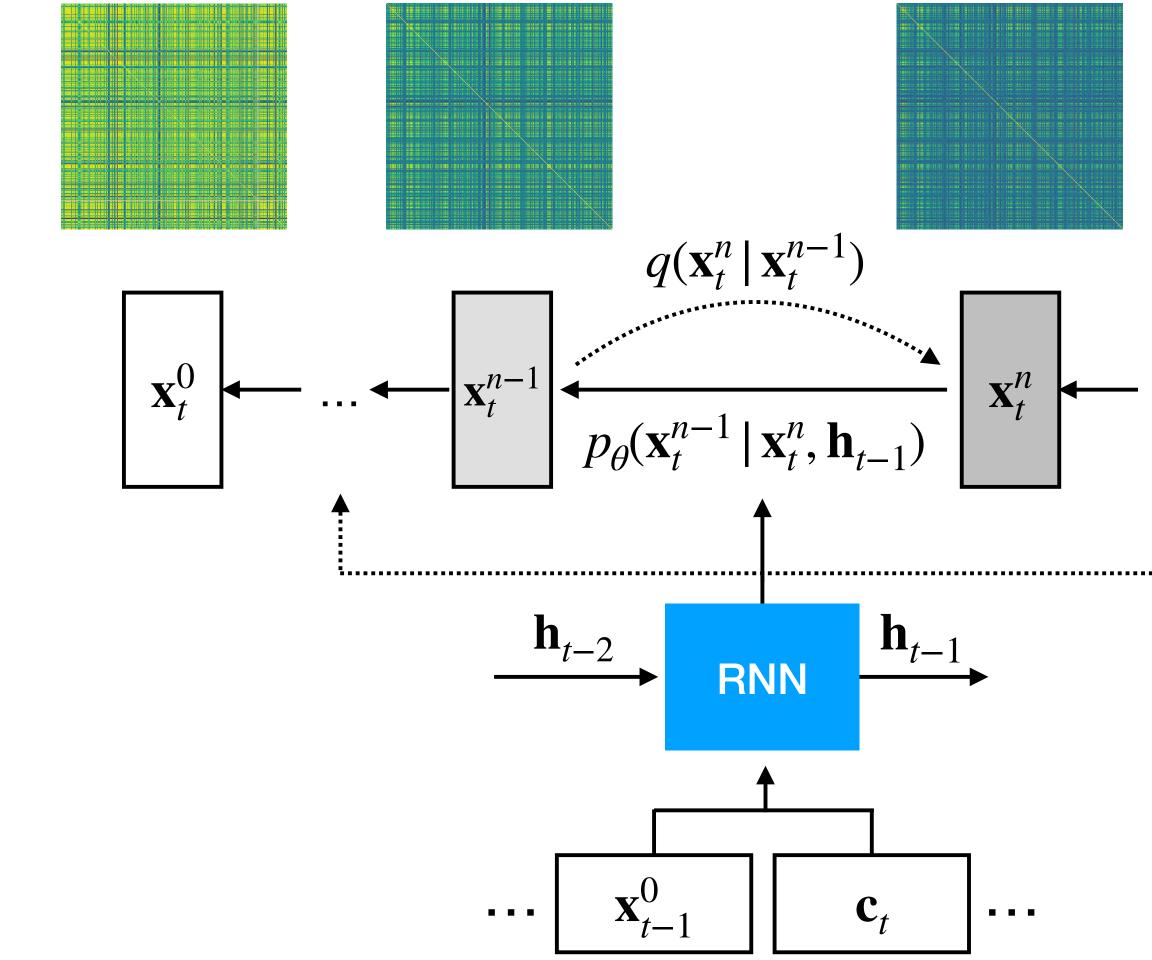
- Joint $p_{\theta}(\mathbf{x}^{0:N}) := p(\mathbf{x}^N) \prod_{n=N}^{1} p_{\theta}(\mathbf{x}^{n-1} | \mathbf{x}^n)$ is a **learned** Markov chain
- Start from $p(\mathbf{x}^N) \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- Each transition is given by Gaussian with shared parameters: $p_{ heta}(\mathbf{x}^{n-1}|\mathbf{x}^n) := \mathcal{N}(\mathbf{x}^{n-1}; \mu_{ heta}(\mathbf{x}^n, n), \sigma_{ heta}(\mathbf{x}^n, n) \mathbf{I})$
 - Where $\mu_{\theta}: \mathbb{R}^D \times \mathbb{N} \to \mathbb{R}^D$ and $\sigma_{\theta}: \mathbb{R}^D \times \mathbb{N} \to \mathbb{R}^+$ are neural networks

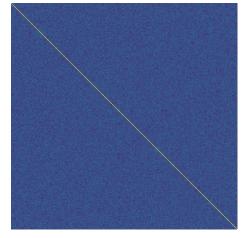
High level intuition

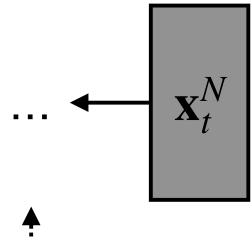
- Sample from distribution by gradual reversal of noising process
- Starting with white noise the learned model produces slightly less noisy signal
- Repeating this *N* times gives us a data sample
- **Training** can be expressed as a regression problem!
- Can learn complex distribuions (Ho et al. 2020)

TimeGrad

- We could learn $p_{\theta}(\mathbf{x}_t^0 | \mathbf{h}_{t-1})$ using a conditional Denosing Diffusion Model for each t
- \mathbf{h}_t state of an RNN from the history of the time series and covariate
- Again: minimizing $-\log p_{\theta}(\mathbf{x}_t^0 | \mathbf{h}_{t-1})$ corresponds to a regression problem for each time step!







Method	Exchange	Solar	Electricity	Traffic	Taxi	Wikipedia
VES	$0.005 {\scriptstyle \pm 0.000}$	$0.9{\pm}0.003$	$0.88{\scriptstyle \pm 0.0035}$	$0.35{\scriptstyle \pm 0.0023}$	-	-
VAR	$0.005 {\scriptstyle \pm 0.000}$	$0.83{\pm}0.006$	$0.039{\scriptstyle\pm0.0005}$	$0.29{\pm}0.005$	$0.292{\scriptstyle\pm0.000}$	$3.4{\pm}0.003$
VAR-Lasso	$0.012{\scriptstyle \pm 0.0002}$	$0.51{\pm}0.006$	$0.025{\scriptstyle\pm0.0002}$	$0.15{\pm}0.002$	-	$3.1{\pm}0.004$
GARCH	$0.023{\scriptstyle\pm0.000}$	$0.88{\scriptstyle \pm 0.002}$	$0.19{\pm}0.001$	$0.37{\scriptstyle \pm 0.0016}$	-	_
KVAE	$0.014{\scriptstyle \pm 0.002}$	$0.34{\scriptstyle \pm 0.025}$	$0.051 {\pm} 0.019$	$0.1{\pm}0.005$	-	$0.095{\scriptstyle \pm 0.012}$
Vec-LSTM	0.008 ± 0.001	$0.391{\pm}0.017$	$0.025{\scriptstyle\pm0.001}$	$0.087{\scriptstyle \pm 0.041}$	$0.506{\pm}0.005$	$0.133{\scriptstyle \pm 0.002}$
ind-scaling						
Vec-LSTM	$0.007{\pm}0.000$	$0.319{\scriptstyle \pm 0.011}$	$0.064{\scriptstyle \pm 0.008}$	$0.103 {\pm} 0.006$	$0.326{\scriptstyle \pm 0.007}$	$0.241{\pm}0.033$
lowrank-Copula						
GP	$0.009 {\pm} 0.000$	$0.368{\scriptstyle \pm 0.012}$	$0.022{\pm}0.000$	$0.079{\pm}0.000$	$0.183{\scriptstyle \pm 0.395}$	$1.483{\scriptstyle \pm 1.034}$
scaling						
GP	0.007 ± 0.000	$0.337{\scriptstyle \pm 0.024}$	$0.0245{\scriptstyle \pm 0.002}$	$0.078{\scriptstyle \pm 0.002}$	0.208 ± 0.183	$0.086{\scriptstyle \pm 0.004}$
Copula						
Transformer	$0.005 {\scriptstyle \pm 0.003}$	$0.301{\scriptstyle \pm 0.014}$	$0.0207{\scriptstyle\pm0.000}$	$0.056{\scriptstyle \pm 0.001}$	$0.179{\scriptstyle \pm 0.002}$	0.063 ± 0.003
MAF						
TimeGrad	$0.006{\scriptstyle\pm0.001}$	0.287 ± 0.02	$0.0206 {\pm} 0.001$	0.044 ± 0.006	$0.114{\scriptstyle \pm 0.02}$	$0.0485 {\scriptstyle \pm 0.002}$

See you at the poster!

Github: zalandoresearch/pytorch-ts

ch-ts