On Characterizing GAN Convergence Through Proximal Duality Gap Paper ID: 4023

Sahil Sidheekh

Laboratory of Statistical Artificial Intelligence & Machine Learning

Indian Institute of Technology Ropar भारतीय प्रौद्योगिकी संस्थान रोपड़

Aroof Aimen

Dr. Narayanan C. K

Objective :

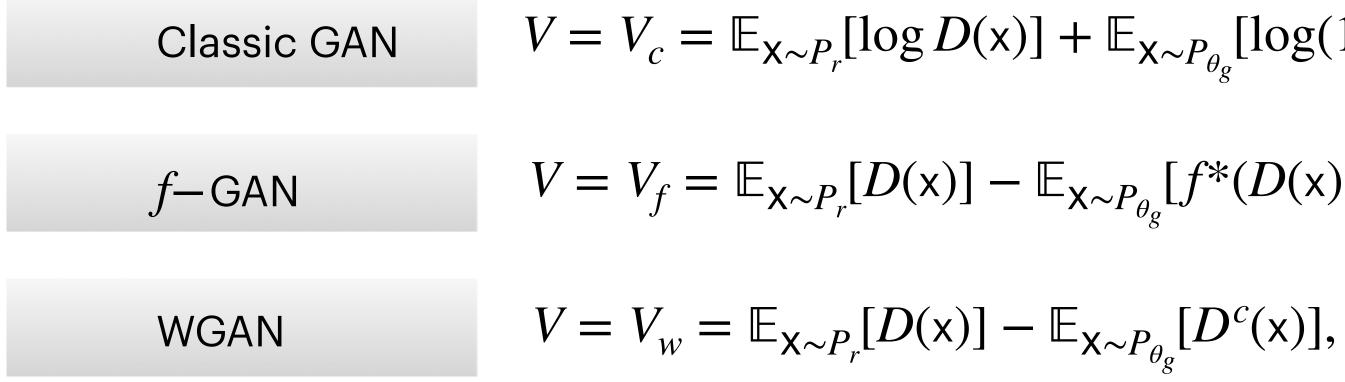
Questions We Address :

1. How to quantitatively identify if a GAN has converged and learned the real data distribution?

2. How do GAN game configurations relate to the nature of the learned data distribution?

Laboratory of Statistical Artificial Intelligence & Machine Learning Indian Institute of Technology Ropar भारतीय प्रौद्योगिकी संस्थान रोपड़

Quantifying and understanding GAN convergence



GAN Formulation

min $\theta_g \in \Theta_0$

Laboratory of Statistical Artificial Intelligence & Machine Learning Indian Institute of Technology Ropar भारतीय प्रौद्योगिकी संस्थान रोपड़

A zero sum min-max game

$$\max_{G} \max_{\theta_d \in \Theta_D} V(D_{\theta_d}, G_{\theta_g}),$$

$$\mathbb{E}_{\mathsf{X} \sim P_{\theta_g}}[\log(1 - D(\mathsf{x}))]$$
$$\sim_{P_{\theta_g}}[f^*(D(\mathsf{x}))],$$

 P_r : real data distribution

 P_{θ_a} : generated data distribution

Each formulation minimises a particular divergence between P_r and P_{θ_r}

GAN Optimality What is GAN convergence?

An adversarial game converges to an <u>equilibrium</u>

Classical notion of GAN convergence - <u>Nash Equilibrium</u>: (θ_d^*, θ_g^*)

$$V(D_{\theta_d}, G_{\theta_g^*}) \le V(D_{\theta_d^*}, G_{\theta_g^*}) \le V(D_{\theta_d^*})$$

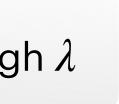
A more generic notion of GAN convergence - <u>Proximal Equilibrium</u>: (θ_d^*, θ_g^*)

$$V(D_{\theta_d}, G_{\theta_g^*}) \leq V(D_{\theta_d^*}, G_{\theta_g^*}) \leq V^{\lambda}(D)$$

where, $V^{\lambda}(D_{\theta_d}, G_{\theta_g}) = \max_{\tilde{\theta}_d \in \Theta_D} V(D_{\tilde{\theta}_d}, G_{\theta_g}) - \lambda ||D_{\tilde{\theta}_d} - D_{\theta_d}||^2$

Laboratory of Statistical Artificial Intelligence & Machine Learning Indian Institute of Technology Ropar भारतीय प्रौद्योगिकी संस्थान रोपड़

 $(\Theta_{d}, G_{\theta_{g}}) ; \forall \theta_{d}, \theta_{g}$


Need not always exist

 $(\mathcal{D}_{\theta_d^*}, G_{\theta_g}); \ \forall \ \theta_d, \theta_g$

Guaranteed to exist

Covers a spectrum of equilibria through λ

Characterizing GAN Convergence

Quantify GAN convergence as attaining the game attaining a proximal equilibrium

Introducing Proximal Duality Gap

 $DG^{\lambda}(\theta_d, \theta_g) =$ where , V_{D_w} $V_{G_w}^{\lambda}$

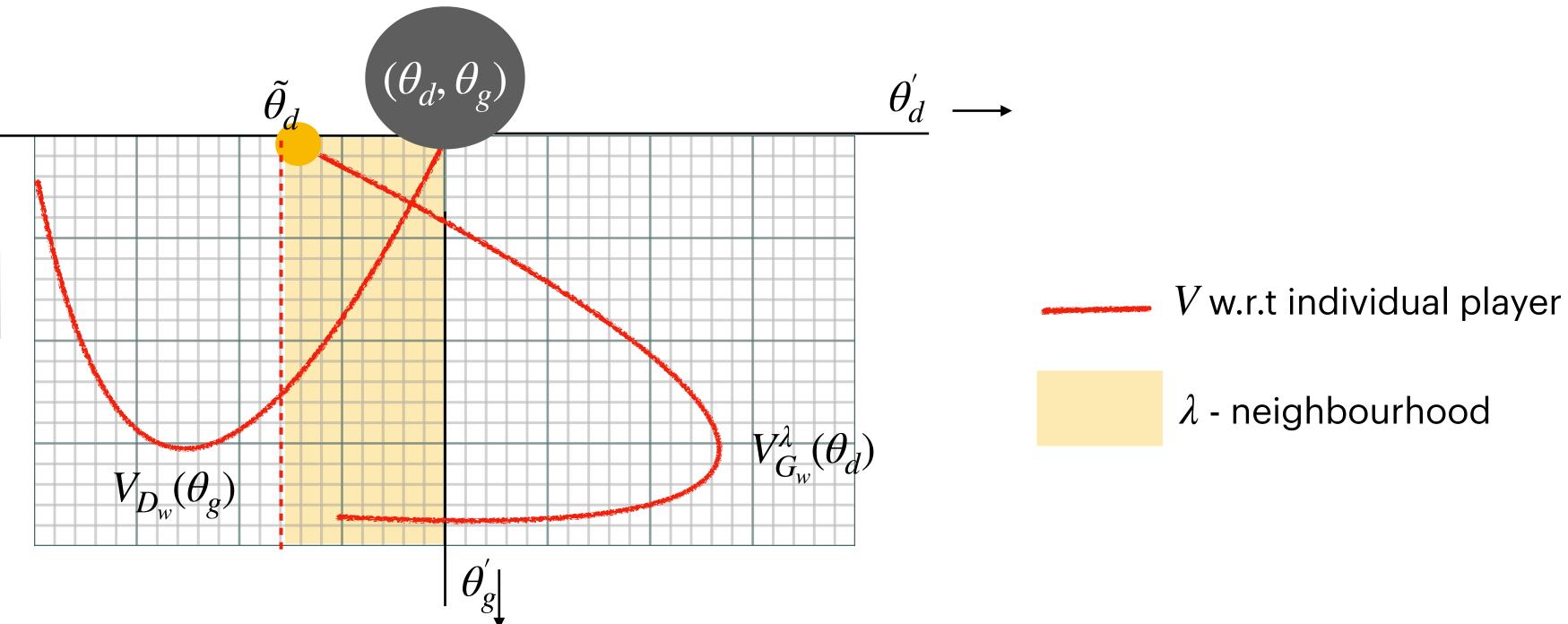
Measure the ability of the players to deviate from a given configuration w.r.t the proximal objective (V^{λ})

Laboratory of Statistical Artificial Intelligence & Machine Learning Indian Institute of Technology Ropar भारतीय प्रौद्योगिकी संस्थान रोपड़

For a GAN configuration (θ_d, θ_g) , we define proximal duality gap (DG^{λ}) as :

$$= V_{D_w}(\theta_g) - V_{G_w}^{\lambda}(\theta_d) ,$$

$$(\theta_g) = \max_{\substack{d \in \Theta_D}} V(D_{\theta_d}, G_{\theta_g})$$


$$(\theta_d) = \min_{\substack{\theta'_g \in \Theta_G}} V^{\lambda}(D_{\theta_d}, G_{\theta'_g})$$

Proximal Duality Gap for GANs

$$DG^{\lambda}(\theta_d, \theta_g) = V_{D_w}(\theta_g) - V_{G_w}^{\lambda}(\theta_d)$$

At a
$$\lambda$$
-proximal equilibrium (θ_d^*, θ_g^*) , $V_{D_w}(\theta_g^*) = V_{G_w}^{\lambda}(\theta_d^*) = V(\theta_d^*, \theta_g^*)$

$$DG^{\lambda}(\theta_d^*, \theta_g^*) = 0$$

Laboratory of Statistical Artificial Intelligence & Machine Learning Indian Institute of Technology Ropar भारतीय प्रौद्योगिकी संस्थान रोपड़

Quantifies GAN Convergence!

Proximal Duality Gap

What does proximal duality gap tell us about the nature of the learned data distribution?

distributions.

 $DG^{\lambda}(\theta_d, \theta_g) \ge DI$

Where κ (≥ 0) denotes the minimum divergence that the considered class of generator functions can achieve with the real data distribution.

Laboratory of Statistical Artificial Intelligence & Machine Learning Indian Institute of Technology Ropar भारतीय प्रौद्योगिकी संस्थान रोपड़

 DG^{λ} is lower bounded closely by the divergence between the real and generated data

$$IV(P_{\theta_g} | | P_r) - \kappa$$

 $DG^{\lambda} \rightarrow 0$ not only implies that the GAN has reached an equilibrium, but also $P_r \approx P_g$

Proximal Duality Gap

Implications of Proximal Duality Gap : Better Understanding GAN optimality

But then, can
$$P_{\theta_{g}} = A$$

Laboratory of Statistical Artificial Intelligence & Machine Learning Indian Institute of Technology Ropar भारतीय प्रौद्योगिकी संस्थान रोपड़

- The generator attains the minimum divergence with the real data distribution at a proximal equilibrium.
 - Not all Proximal equilibria are Nash equilibria

- GANs can learn / attain the minimum divergence with P_r at non-Nash points as well
 - P_r at non-proximal equilibria?

Proximal Duality Gap

Implications of Proximal Duality Gap : Better Understanding GAN optimality

generator learns the real data distribution. $P_{\theta_{g}^{*}} = P_{r} \implies$

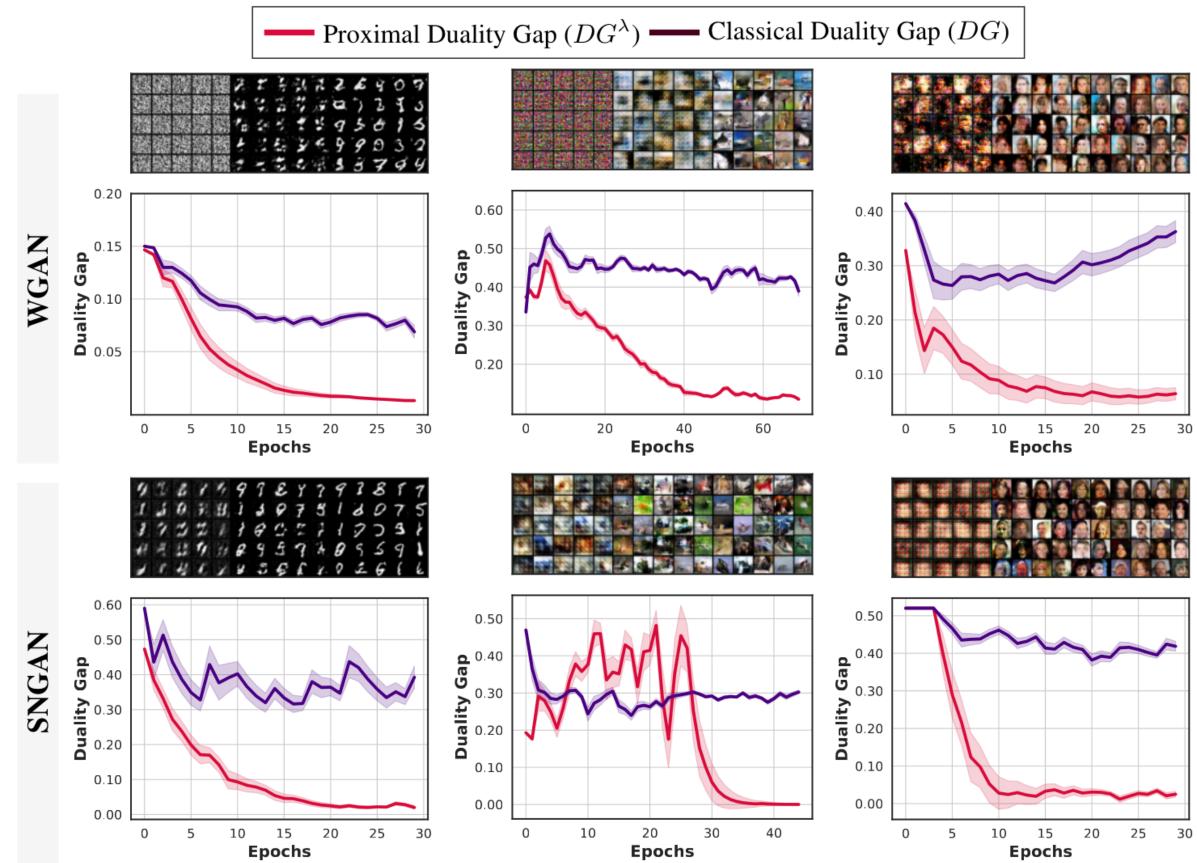
GANs can capture P_r at a game configuration if and only if it corresponds to a Stackelberg Equilibrium.

 DG^{λ} is sufficient to quantify GAN convergence in the wild

 DG^{λ} at a configuration (θ_d^*, θ_g^*) for the GAN game is equal to zero for $\lambda = 0$, when the

$$DG^{\lambda=0}(\theta_d^*, \theta_g^*) = 0$$

Experiments and Results


Simulate GAN convergence & non-convergence

Monitor GAN training using DG^{λ}

DG^{λ} tends to zero when GAN converges

Laboratory of Statistical Artificial Intelligence & Machine Learning Indian Institute of Technology Ropar भारतीय प्रौद्योगिकी संस्थान रोपड़

Thank You

Visit the link below to have a look at our paper !

Link: https://arxiv.org/abs/2105.04801

Laboratory of Statistical Artificial Intelligence & Machine Learning

Indian Institute of Technology Ropar भारतीय प्रौद्योगिकी संस्थान रोपड़

