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State-Space Models 2
—

» Latent Markov process {X;};>1 and observations {Y;};>1 with X7 ~ g (-),

Xt| (thl = xtfl) ~ fo ('|$t71) ) Y;:| (Xt = $t) ~ Jdo (|$t) .

» Ubiquitous in econometrics, statistics, machine learning, robotics.

» Interested in estimating parameter 6 given observations Yi.7 = y1.1




Inference in State-Space Models 3

—

> Given 6, sequential state inference based on optimal filter pg(x¢|y1.¢)

Prediction: pg(x¢|y1.1—1) = /p9($t—1|y1:t—1)f9 (w¢]ws—1) day

Bayes update: py(z[y.1) = 2 (wrlre) oy,

pa(ytlyl:t_1)

» Log-likelihood function

T

0(0) =logpe(yr.r) = Y _ log pa(yelyr:e—1)-
t=1

» The optimal filter pg(z;|y1.¢) and log-likelihood ¢(6) are intractable except
for finite state-space and linear Gaussian models.




Particle Filter 101: The Bootstrap Filter 4
—

» Sampling: For i =1,..., N, sample )Z'Z ~ fo(-|X}_;) then
| X
Po(xilyrei1) = ; e

> Weighting: Set py(x:|y1.s) = ZN L wiéxl, wi o gg(yt\)?f), Zf\il wi = 1.

» Resampling: For i = 1,..., N, sample X} ~ §0($f|y1:t) to obtain

Po(we|yr:1) 25)«

» From PF outputs, one gets a consistent estimate of ¢(6)
T N

~ 1
0) = "logBo(yelyri—1),  for Po(yelyre—1) = Z (3| X7)

t=1 =1

> Likelihood estimate is unbiased for any N >1: Epg[exp £(6)] = exp £(6)




Variational inference meets particle filters
—

» As the likelihood estimate output by PF is unbiased,

o~ o~

(PEBO(9) = Epr[£(0)] < log Epr[exp £()] = €(0),
which could be maximized using SGD.

» This was exploited in (Maddison et al., NIPS 2017; Naesseth et al.,
AISTATS 2018; Le et al., ICLR 2018).

» PF are attractive as the “variational gap” satisfies

~

(ELBO () _ 1(9) ~ — var [GXPM)} .

2 exp £(0)

» Problem: Unbiased estimates of V/EFBO(9) suffer from very high
variance as resampling steps involve sampling from discrete distributions
(high-variance REINFORCE estimators).




Variational inference meets particle filters 6
—

» Dropping resampling gradient terms has been used (Maddison et al., NIPS
2017; Naesseth et al., AISTATS 2018; Le et al., ICLR 2018) but can be
problematic.

» Proposition. As N — oo, the expectation of the ELBO gradient estimate
dropping resampling terms converges to

T
Z/Ve log po (@, ye|we—1)po(@i—1, Te|yr:e)dwe—1day
=1
whereas
T
Vel(0) = Z/Ve log po (¢, Ye|zi—1)po(zi—1, T|y1.7)dai—1day.
=1

» For slow mixing processes, those two quantities will differ significantly.




Differentiable Resampling using Optimal Transport 7
—

> Let U(a, B) := {distributions with marginals « and 5}. Any P € U(«, 5)
can “transport” « to 3, i.e.

B(da’) = /P(dmdx’) = /a(dx)P(dx/\x).
» The Optimal Transport (OT) between « and j is given by

POT — arg mi(er Ex xn~p [|IX = X'|],

PeU(a,B)

and W3 (a, B) = E(x, xn~por [[[X — X'|[] is the squared 2-Wasserstein
metric.

» If o, 3 have densities, POT (da'|z) = d7(x)(dz’) where T'is the Optimal
Transport map, i.e. if X ~ « then X' =T(X) ~ .
> Application to PF: consider oo = pg(x¢|y1:t—1) and S8 = pg(¢|y1.). If we

could compute T and differentiate it, we would have no resampling and a
differentiable estimate of £(60).




Differentiable Resampling using Optimal Transport 8
—

> In practice, N is finite and ay = + Zfil Oxi, By = Zi\; wi(SXZ'.

» Problem 1: Computing P°T is O(N?log N), not parallelizable nor
differentiable (Reich, STAM Sci Comp 2013).

» Solution: Use entropy-regularized OT (Cuturi, 2013).

» Problem 2: POT(da'|z) # 07(,)(da’) for empirical measures.
» Solution: Use ensemble transform (Reich, 2013; Cuturi & D., 2014):
X' = [2'POT(d2’|X) at the cost of introducing bias in £(6).

» Combined to reparameterization trick, this provides differentiable PF.




Entropy Regularized Transport 9
—

> For any € > 0, define for a = (1/N,...,1/N), b = (wh, ..., w") and
cij = |1X7 = X{|]?

ng
Te(an, § i (cag +€log 25).
OT(an,BN) = PeSab) p] ¢i,j + elog —= ah,

» Regularized OT can be solved using Sinkhorn’s algorithm (Cuturi, NIPS
2013), linear convergence.

» Sinkhorn’s recursion is differentiable (Genevay et al., AISTATS 2018): use
implicit differentiation of fixed point.

» Differentiable Ensemble Transform (DET)
X Nzk OT € Xk

» DET + reparam trick for transition fp(x¢|zi—1) = Differentiable Particle
Filtering.




Convergence Results 10
—

» Ensemble Transform: Let By = % Zfil § i where X* are obtained
using DET between ay, Sy. «a, are two measures with A-Lipschitz OT.
Then for bounded 1-Lipschitz function v, we have

B8 (1Y) = By ()| < 2A1/2£1/2 {01/2 n 5] 1/2
+max{\, 1} [Wa(ay,a) + Wa(Bn, B)] (1)

where 0 :=sup, ey |z — y| and & = Wa(an, a) + Wa(By, B) + v2¢log N.
» Consistency: Under regularity assumptions, expectations w.r.t. filtering

distributions and log-likelihood estimate converge as N — oo and are
consistent if € = O(1/log N).




11

Gaussian SSM

Experiments: Linear

—

> Xi{Xi-1} ~ N (diag(6h 02)X;-1,0.5I), Yi{X;} ~N(X;,0.1-1)

i~ ,
SEEE k4

~

Log-likelihood ¢(0), standard PF estimate ¢(f;u) and differentiable PF estimate




Experiments: Linear Gaussian SSM 12

N 5
, ’
7 p
P 2
AR
ot .
4 *
.. DR s b O
YRS RV23 R i
Ar Az s AR NN ANS v (ot v A N\
R VAN S SNEVAN NA NAY 71 ;/1\K\‘ AN VANRIEQNUN
S A A T OASASNS o 7 Ny T VI e
Sy S AR A XNAY V23S YRRV A D' 5 R\
Wy/é%\//rmrt\\\/\(rzﬂz WAAN w1 A \?\A\\\L

~

Gradient Vg£(0), standard PF estimate Vy£(0;u) and differentiable PF estimate




More Experiments 13

—

Table 1: Mean & std of %(2(9; U)-1(6)) Table 2: 107 RMSE" over 50 datasets
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(left) Bias/std ELBO for standard PF & differentiable PF - (right) RMSE
parameter estimates




Experiments: Robot Localization 14

—

» Given agent’s initial state, S1, and inputs a;, one would like to infer its
location given observations Oy.

> S = (Xt(l),Xt(Q),fyt) where (Xt(l), Xt(Q)) are location coordinates and ~; the
robot’s orientation. Oy are raw images, encoded to extract useful features
using a NN Ey, where Y; = Ep(Oy).

(1) @

» Given actions a; = (v; ,wt), we have

Siy1 = Fp(St,a) +ve, vy ~N(0,XF),
}/;ﬁ - G@(St) +€t7 €t NN(O,O’%I),




Experiments: Robot Localization 15
—

» Set up from (Jonschkowki et al. 2018) with DeepMind data: ‘true’
trajectories are given for each maze with state, action and raw 32 x 32 RGB
pixel images Oy.

> Asin (Wen et al., 2020), we consider a combination of losses

A * iyl 2 1,
Luse = = ZHX Z w X, Ler = = 0(0),

=1

Lap = Z |Dg(Eg(Or)) — O4l]?,

t=1

where X} are the true states available from training data and ZL L wiX]
are the PF estimate of E[X¢|y1.4].

» The PF-based loss terms are not differentiable w.r.t. 6 under traditional
resampling schemes.




Experiments: Robot Localization 16
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Figure: MSE of PF (red), SPF (green) and DPF (blue) estimates, evaluated on test
data during training for 3 different mazes

Table: MSE and + Standard Deviation evaluated on Test Data

MAazE 1 MAZE 2 MAZE 3

DET 3.5540.20 4.65+0.50 4.4440.26
MUL 10.7140.45 11.8640.57 12.88+0.65
SOFT  9.1440.39 10.1240.40 11.424¢.37




Discussion 17
—

» Differentiable particle filter = Regularized OT -+ reparameterization trick.
» End-to-end differentiable.

» Cost O(N?) vs O(N) for available methods but additional cost negligible
when used to train neural networks and regular PFs can be deployed once
parameters have been estimated.

» DPF could be potentially sped up (Altschuler et al., 2019; Scetbon &
Cuturi, 2020).

» Sharp quantitative results are still missing!
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