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State-Space Models 2

I Latent Markov process {Xt}t≥1 and observations {Yt}t≥1 with X1 ∼ µθ (·),

Xt| (Xt−1 = xt−1) ∼ fθ (·|xt−1) , Yt| (Xt = xt) ∼ gθ (·|xt) .

x1 x2 x3

y1 y2 y3

I Ubiquitous in econometrics, statistics, machine learning, robotics.

I Interested in estimating parameter θ given observations Y1:T = y1:T



Inference in State-Space Models 3

I Given θ, sequential state inference based on optimal filter pθ(xt|y1:t)

Prediction: pθ(xt|y1:t−1) =

∫
pθ(xt−1|y1:t−1)fθ (xt|xt−1) dxt

Bayes update: pθ(xt|y1:t) =
gθ (yt|xt) pθ(xt|y1:t−1)

pθ(yt|y1:t−1)
,

I Log-likelihood function

`(θ) = log pθ(y1:T ) =

T∑
t=1

log pθ(yt|y1:t−1).

I The optimal filter pθ(xt|y1:t) and log-likelihood `(θ) are intractable except
for finite state-space and linear Gaussian models.



Particle Filter 101: The Bootstrap Filter 4

I Sampling: For i = 1, ..., N , sample X̃i
t ∼ fθ(·|Xi

t−1) then

p̂θ(xt|y1:t−1) =
1

N

N∑
i=1

δX̃i
t

I Weighting: Set p̃θ(xt|y1:t) =
∑N
i=1 w

i
tδX̃i

t
, wit ∝ gθ(yt|X̃i

t),
∑N
i=1 w

i
t = 1.

I Resampling: For i = 1, ..., N , sample Xi
t ∼ p̃θ(xt|y1:t) to obtain

p̂θ(xt|y1:t) =
1

N

N∑
i=1

δXi
t

I From PF outputs, one gets a consistent estimate of `(θ)

̂̀(θ) =

T∑
t=1

log p̂θ(yt|y1:t−1), for p̂θ(yt|y1:t−1) =
1

N

N∑
i=1

gθ(yt|X̃i
t)

I Likelihood estimate is unbiased for any N ≥1: EPF[exp ̂̀(θ)] = exp `(θ)



Variational inference meets particle filters 5

I As the likelihood estimate output by PF is unbiased,

`ELBO(θ) = EPF[̂̀(θ)] ≤ logEPF[exp ̂̀(θ)] = `(θ),

which could be maximized using SGD.

I This was exploited in (Maddison et al., NIPS 2017; Naesseth et al.,
AISTATS 2018; Le et al., ICLR 2018).

I PF are attractive as the “variational gap” satisfies

`ELBO(θ)− `(θ) ≈ −1

2
var

[
exp ̂̀(θ)
exp `(θ)

]
.

I Problem: Unbiased estimates of ∇θ`ELBO(θ) suffer from very high
variance as resampling steps involve sampling from discrete distributions
(high-variance REINFORCE estimators).



Variational inference meets particle filters 6

I Dropping resampling gradient terms has been used (Maddison et al., NIPS
2017; Naesseth et al., AISTATS 2018; Le et al., ICLR 2018) but can be
problematic.

I Proposition. As N →∞, the expectation of the ELBO gradient estimate
dropping resampling terms converges to

T∑
t=1

∫
∇θ log pθ(xt, yt|xt−1)pθ(xt−1, xt|y1:t)dxt−1dxt

whereas

∇θ`(θ) =

T∑
t=1

∫
∇θ log pθ(xt, yt|xt−1)pθ(xt−1, xt|y1:T )dxt−1dxt.

I For slow mixing processes, those two quantities will differ significantly.



Differentiable Resampling using Optimal Transport 7

I Let U(α, β) := {distributions with marginals α and β}. Any P ∈ U(α, β)
can “transport” α to β, i.e.

β(dx′) =

∫
P(dx, dx′) =

∫
α(dx)P(dx′|x).

I The Optimal Transport (OT) between α and β is given by

POT = arg min
P∈U(α,β)

E(X,X′)∼P
[
||X −X ′||2

]
,

and W 2
2 (α, β) = E(X,X′)∼POT

[
||X −X ′||2

]
is the squared 2-Wasserstein

metric.
I If α, β have densities, POT(dx′|x) = δT (x)(dx′) where T is the Optimal

Transport map, i.e. if X ∼ α then X ′ = T (X) ∼ β.
I Application to PF: consider α = pθ(xt|y1:t−1) and β = pθ(xt|y1:t). If we

could compute T and differentiate it, we would have no resampling and a
differentiable estimate of `(θ).



Differentiable Resampling using Optimal Transport 8

I In practice, N is finite and αN = 1
N

∑N
i=1 δXi

t
, βN =

∑N
i=1 w

i
tδXi

t
.

I Problem 1: Computing POT is O(N3 logN), not parallelizable nor
differentiable (Reich, SIAM Sci Comp 2013).
I Solution: Use entropy-regularized OT (Cuturi, 2013).

I Problem 2: POT(dx′|x) 6= δT (x)(dx′) for empirical measures.
I Solution: Use ensemble transform (Reich, 2013; Cuturi & D., 2014):
X ′ =

∫
x′POT(dx′|X) at the cost of introducing bias in ̂̀(θ).

I Combined to reparameterization trick, this provides differentiable PF.



Entropy Regularized Transport 9

I For any ε > 0, define for a = (1/N, ..., 1/N), b = (w1, ..., wN ) and
ci,j = ||Xi

t −X
j
t ||2

OTε(αN , βN ) = min
P∈S(a,b)

N∑
i,j=1

pi,j

(
ci,j + ε log

pi,j
aibj

)
.

I Regularized OT can be solved using Sinkhorn’s algorithm (Cuturi, NIPS
2013), linear convergence.

I Sinkhorn’s recursion is differentiable (Genevay et al., AISTATS 2018): use
implicit differentiation of fixed point.

I Differentiable Ensemble Transform (DET)

X̄i
t = N

∑
kp

OT,ε
k,i Xk

t .

I DET + reparam trick for transition fθ(xt|xt−1) = Differentiable Particle
Filtering.



Convergence Results 10

I Ensemble Transform: Let β̄N = 1
N

∑N
i=1 δX̄i where X̄i are obtained

using DET between αN , βN . α, β are two measures with λ-Lipschitz OT.
Then for bounded 1-Lipschitz function ψ, we have

∣∣βN (ψ)− β̄N (ψ)
∣∣ ≤ 2λ1/2E1/2

[
d1/2 + E

]1/2
+ max{λ, 1} [W2(αN , α) +W2(βN , β)] (1)

where d := supx,y∈X |x− y| and E = W2(αN , α) +W2(βN , β) +
√

2ε logN .

I Consistency: Under regularity assumptions, expectations w.r.t. filtering
distributions and log-likelihood estimate converge as N →∞ and are
consistent if ε = O(1/ logN).



Experiments: Linear Gaussian SSM 11

I Xt|{Xt−1} ∼ N (diag(θ1 θ2)Xt−1, 0.5I2) , Yt|{Xt} ∼ N (Xt, 0.1 · I2)

Log-likelihood `(θ), standard PF estimate ̂̀(θ;u) and differentiable PF estimate



Experiments: Linear Gaussian SSM 12

Gradient ∇θ`(θ), standard PF estimate ∇θ ̂̀(θ;u) and differentiable PF estimate



More Experiments 13

(left) Bias/std ELBO for standard PF & differentiable PF - (right) RMSE
parameter estimates



Experiments: Robot Localization 14

I Given agent’s initial state, S1, and inputs at, one would like to infer its
location given observations Ot.

I St = (X
(1)
t , X

(2)
t , γt) where (X

(1)
t , X

(2)
t ) are location coordinates and γt the

robot’s orientation. Ot are raw images, encoded to extract useful features
using a NN Eθ, where Yt = Eθ(Ot).

I Given actions at = (v
(1)
t , v

(2)
t , ωt), we have

St+1 = Fθ(St, at) + νt, νt ∼ N (0,ΣF ),

Yt = Gθ(St) + εt, εt ∼ N (0, σ2
GI),



Experiments: Robot Localization 15

I Set up from (Jonschkowki et al. 2018) with DeepMind data: ‘true’
trajectories are given for each maze with state, action and raw 32× 32 RGB
pixel images Ot.

I As in (Wen et al., 2020), we consider a combination of losses

L̂MSE =
1

T

T∑
t=1

||X∗t −
N∑
i=1

witX
i
t ||2, L̂PF = − 1

T
ˆ̀(θ),

L̂AE =

T∑
t=1

||Dθ(Eθ(Ot))−Ot||2,

where X?
t are the true states available from training data and

∑N
i=1 w

i
tX

i
t

are the PF estimate of E[Xt|y1:t].

I The PF-based loss terms are not differentiable w.r.t. θ under traditional
resampling schemes.



Experiments: Robot Localization 16

Figure: MSE of PF (red), SPF (green) and DPF (blue) estimates, evaluated on test
data during training for 3 different mazes

Table: MSE and ± Standard Deviation evaluated on Test Data

Maze 1 Maze 2 Maze 3

DET 3.55±0.20 4.65±0.50 4.44±0.26

MUL 10.71±0.45 11.86±0.57 12.88±0.65

SOFT 9.14±0.39 10.12±0.40 11.42±0.37



Discussion 17

I Differentiable particle filter = Regularized OT + reparameterization trick.

I End-to-end differentiable.

I Cost O(N2) vs O(N) for available methods but additional cost negligible
when used to train neural networks and regular PFs can be deployed once
parameters have been estimated.

I DPF could be potentially sped up (Altschuler et al., 2019; Scetbon &
Cuturi, 2020).

I Sharp quantitative results are still missing!
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