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Introduction

> To tackle existing issues in the RKHS bandit problem (or kernelized bandit problem), we
propose a novel reduction method from RKHS bandit problems to (misspecified) linear
bandit problems.

> Specifically, we address the following issues using the reduction method:

» Non-existence of algorithms for the adversarial RKHS bandit problem with general reward
functions.

» High computational complexity of the stochastic RKHS bandit algorithms.

» We derive the reduction method from an approximation method (P-greedy) developed in

the approximation theory literature and it could potentially solve issues beyond the above.
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Function Approximation in RKHS

Let K : Q2 x Q — R be a positive definite kernel and Hg (€2) the corresponding RKHS, where
Q c RY is a subset.
» Usual approximation methods used for the RKHS bandit problem basically aim to
approximate the value of kernel K(x, y) by the inner product of finite dimensional vectors.
» In this talk, we consider approximation of functions in the RKHS by an element of a finite

dimensional subspace of the RKHS.
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Reduction from RKHS Bandits to Misspecified Linear Bandits

To approximate a function in the RKHS, we apply a greedy algorithm called the P-greedy.

The P-greedy algorithm takes an admissible error ¢ (or tolerance) and returns a finite number
of functions (called Newton basis) N, ..., Np.

Then for any f € Hyk () and x, we have

[F0) = 0% < [l e s
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linear model misspecification error

where 6 = ({(f, Ni)HK(Q))lgigD € RP and x = (Ni(x))1<i<p € RD.
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Reduction from RKHS Bandits to Misspecified Linear Bandits

» If f is a reward function of a RKHS bandit problem, we can regard the problem as a

misspecified linear bandit problem.

» We can construct algorithms for a misspecified linear bandit problem by modifying

existing ones for linear bandits.
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Convergence Rate of the P-greedy algorithm

THEOREM 1 (Santin and Haasdonk 2017)

Let o,q, T > 0 and denote by D = Dq (T) the number of functions returned by the
P-greedy algorithm with error e = o/ T9.

1. Suppose K has finite smoothness with parameter v > 0. Then
Dgo(T) = O (@~ 9/vTda/V),

2. Suppose K has infinite smoothness. Then Dqo(T) = O ((qlog T — log(a))?).

We omit the definition of smoothness of kernels (see the paper for the definition). We note

that rational quadratic and squared exponential kernels have infinite smoothness and Matern
kernels with parameter v have finite smoothness.
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Main Results (Stochastic Case, APG-UCB)

We apply a modification of LinUCB to the stochastic RKHS bandit problem and call the

algorithm APG-UCB. (Here APG stands for Approximation theory based method using
P-Greedy.)

THEOREM 2

Let Rapc.ucs(T) be the (cumulative) regret that APG-UCB incurs for the stochastic RKHS

bandit problem up to time step T. Then with probability at least 1 — 6, Rapc.ucs(T) is given
as

(\/TDq o(T)log(1/6) + an(T)\/?>

and the total computational complexity of the algorithm is given as O(|A|TDZ ,(T)).

In the paper, we also showed that APG-UCB is an approximation of IGP-UCB (Chowdhury
and Gopalan 2017), whose total computational complexity is given as O(].A| T3).
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Main Results (Adversarial Case)

Next, we apply EXP3 for adversarial linear bandits to the adversarial RKHS bandit problem.
THEOREM 3

Let Rapc.exp3(T) be the cumulative regret that APG-EXP3 with o = log(|.A|) and g =1
incurs for the adversarial RKHS bandit problem up to time step T. Then the expected regret

E [RApg_Expg( T)] is given as 5 (\/TDLQ(T) Iog (‘AD)

REMARK 4
Chatterji et al. 2019 also proved a similar result. However, they only consider “the kernel loss

case” (i.e., the case when the objective function f; has a form K(-,£), which is a very special
function in the RKHS).
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Experiments in Synthetic Environments

Although APG-UCB has empirically almost the same cumulative regret as IGP-UCB, its
running time is much shorter than IGP-UCB, which supports our theoretical results.
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Figure: Normalized Cumulative Regret for RQ kernels.

Table: Total Running Time (in seconds).

APG-UCB IGP-UCB
d=1 4.2e01 5.7e+03
d=2 27e+00 5.1e+03
d=3 3.0e+01 5.7e+03
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