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Introduction

I To tackle existing issues in the RKHS bandit problem (or kernelized bandit problem), we

propose a novel reduction method from RKHS bandit problems to (misspecified) linear

bandit problems.

I Specifically, we address the following issues using the reduction method:

I Non-existence of algorithms for the adversarial RKHS bandit problem with general reward

functions.

I High computational complexity of the stochastic RKHS bandit algorithms.

I We derive the reduction method from an approximation method (P-greedy) developed in

the approximation theory literature and it could potentially solve issues beyond the above.
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Function Approximation in RKHS

Let K : Ω× Ω→ R be a positive definite kernel and HK (Ω) the corresponding RKHS, where

Ω ⊂ Rd is a subset.

I Usual approximation methods used for the RKHS bandit problem basically aim to

approximate the value of kernel K (x , y) by the inner product of finite dimensional vectors.

I In this talk, we consider approximation of functions in the RKHS by an element of a finite

dimensional subspace of the RKHS.
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Reduction from RKHS Bandits to Misspecified Linear Bandits

To approximate a function in the RKHS, we apply a greedy algorithm called the P-greedy.

The P-greedy algorithm takes an admissible error e (or tolerance) and returns a finite number

of functions (called Newton basis) N1, . . . ,ND .

Then for any f ∈ HK (Ω) and x , we have

|f (x)− 〈θf , x̃〉︸ ︷︷ ︸
linear model

|≤ ‖f ‖HK (Ω) e︸ ︷︷ ︸
misspecification error

,

where θf =
(
〈f ,Ni 〉HK (Ω)

)
1≤i≤D ∈ RD and x̃ = (Ni (x))1≤i≤D ∈ RD .
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Reduction from RKHS Bandits to Misspecified Linear Bandits

I If f is a reward function of a RKHS bandit problem, we can regard the problem as a

misspecified linear bandit problem.

I We can construct algorithms for a misspecified linear bandit problem by modifying

existing ones for linear bandits.
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Convergence Rate of the P-greedy algorithm

Theorem 1 (Santin and Haasdonk 2017)

Let α, q,T > 0 and denote by D = Dq,α(T ) the number of functions returned by the
P-greedy algorithm with error e = α/T q.

1. Suppose K has finite smoothness with parameter ν > 0. Then
Dq,α(T ) = O

(
α−d/νT dq/ν

)
.

2. Suppose K has infinite smoothness. Then Dq,α(T ) = O
(
(q logT − log(α))d

)
.

We omit the definition of smoothness of kernels (see the paper for the definition). We note
that rational quadratic and squared exponential kernels have infinite smoothness and Matern
kernels with parameter ν have finite smoothness.
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Main Results (Stochastic Case, APG-UCB)

We apply a modification of LinUCB to the stochastic RKHS bandit problem and call the
algorithm APG-UCB. (Here APG stands for Approximation theory based method using
P-Greedy.)

Theorem 2

Let RAPG-UCB(T ) be the (cumulative) regret that APG-UCB incurs for the stochastic RKHS
bandit problem up to time step T . Then with probability at least 1− δ, RAPG-UCB(T ) is given
as

Õ

(√
TDq,α(T ) log(1/δ) + Dq,α(T )

√
T

)
and the total computational complexity of the algorithm is given as O(|A|TD2

q,α(T )).

In the paper, we also showed that APG-UCB is an approximation of IGP-UCB (Chowdhury
and Gopalan 2017), whose total computational complexity is given as O(|A|T 3).
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Main Results (Adversarial Case)

Next, we apply EXP3 for adversarial linear bandits to the adversarial RKHS bandit problem.

Theorem 3

Let RAPG-EXP3(T ) be the cumulative regret that APG-EXP3 with α = log(|A|) and q = 1

incurs for the adversarial RKHS bandit problem up to time step T . Then the expected regret

E [RAPG-EXP3(T )] is given as Õ
(√

TD1,α(T ) log (|A|)
)
.

Remark 4

Chatterji et al. 2019 also proved a similar result. However, they only consider “the kernel loss

case” (i.e., the case when the objective function ft has a form K (·, ξ), which is a very special

function in the RKHS).
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Experiments in Synthetic Environments
Although APG-UCB has empirically almost the same cumulative regret as IGP-UCB, its
running time is much shorter than IGP-UCB, which supports our theoretical results.

Figure: Normalized Cumulative Regret for RQ kernels.

Table: Total Running Time (in seconds).

APG-UCB IGP-UCB

d = 1 4.2e-01 5.7e+03
d = 2 2.7e+00 5.1e+03
d = 3 3.0e+01 5.7e+03

Sho Takemori and Masahiro Sato (FFBI) App. Theory Based Methods for RKHS Bandits ICML 2021 9 / 10



References I

Chatterji, Niladri, Aldo Pacchiano, and Peter Bartlett (2019). “Online learning with kernel
losses”. In: International Conference on Machine Learning. PMLR, pp. 971–980.

Chowdhury, Sayak Ray and Aditya Gopalan (2017). “On kernelized multi-armed bandits”. In:
Proceedings of the 34th International Conference on Machine Learning, pp. 844–853.

Santin, Gabriele and Bernard Haasdonk (2017). “Convergence rate of the data-independent
P-greedy algorithm in kernel-based approximation”. In: Dolomites Research Notes on
Approximation 10.Special Issue.

Sho Takemori and Masahiro Sato (FFBI) App. Theory Based Methods for RKHS Bandits ICML 2021 10 / 10


