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• Bayesian Optimisation (BO) has been a successful black-box optimiser
– Expressive surrogate models and sample efficiency
– Useful for applications where evaluations are difficult, e.g., AutoML
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• Bayesian Optimisation (BO) has been a successful black-box optimiser
– Expressive surrogate models and sample efficiency
– Useful for applications where evaluations are difficult, e.g., AutoML

• However, BO in high dimensions and heterogenous search spaces (i.e., some 
variables are not continuous) is still challenging

– Search space grows exponentially with dimension, making GP surrogate difficult to cover
– Categorical variables do not have natural ordering; one-hot transform makes problems 

even higher-dimensional
– Some examples: combinatorial optimisation problems such as maximum satisafiability, 

Neural network tuning with both continuous (e.g., learning rate) and categorical (e.g., 
choice of optimiser) hyperparameters

Bayesian optimisation (BO)
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• Our method: CASMOPOLITAN

– Use local trust regions and tailored kernels to effectively handle high dimensions and 
categorical/mixed search spaces.

– Derive guarantee under some assumptions that the method converges.
– Empirically show that our method achieves better performance, better sample 

efficiency or both. 
– Code implementation is open-sourced.

Contributions
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• Tailored kernel:  GP with Exponentiated overlap kernel. 

CASMOPOLITAN in Categorical Space
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• Tailored kernel:  GP with Exponentiated overlap kernel. 

• Use of Trust Regions defined in terms of Hamming distance 
from the best location seen so far:

CASMOPOLITAN in Categorical Space
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𝛼 𝒉 = 0.1

𝛼 𝒉 = 0.05

𝛼 𝒉 = 0.2

Step 1: Initialisation Step 2: Acquisition optimisation Step 3a (Successive failures)
shrink 𝐿

Step 3b (Successive successes)
shift trust region centre and/or expand 𝐿

Starting node

Next obj. func. query



• Tailored kernel:  GP with Exponentiated overlap kernel. 

• Use of Trust Regions defined in terms of Hamming distance 
from the best location seen so far:

• Trust regions are restarted using the UCB principle to ensure
guarantee in terms of trust region restarts.

CASMOPOLITAN in Categorical Space
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• Tailored kernel:  GP now handles both categorical variables 𝒉
continuous variables 𝑥. 

CASMOPOLITAN in Mixed Space
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• Tailored kernel:  GP now handles both categorical variables 𝒉
continuous variables 𝑥. 

• Use of separate trust regions for both categorical and continuous variables

CASMOPOLITAN in Mixed Space
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Step 1: Initialisation

Step 2: Acquisition optimisation

x
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a) Conditional on categorical inputs, update 
the continuous variables for 1 step

b) Conditional on continuous inputs, update the
categorical variables for 1 step

c) Repeat a) and b) until convergence for 
the next objective function query
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Step 3a (Successive failures)
shrink 𝐿 for both cont. and cat. variables

x x
x

Step 3b (Successive successes)
shift trust region centre and/or expand 𝐿

for both cont. and cat variables

x
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current location



• Tailored kernel:  GP now handles both categorical variables 𝒉
continuous variables 𝑥. 

• Use of separate trust regions for both categorical and continuous variables

• May be extended to handle other discrete inputs such as integer-valued and ordinal variables.

CASMOPOLITAN in Mixed Space
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Proof sketch of guarantee derivation
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• We first prove that both kernels have bounded maximum information gain.

• We make assumptions on the properties of the trust region.
– Objective function 𝑓 is bounded
– Given a small enough region, the surrogate model may approximate 𝑓

• Using the UCB restarting of the trust region, we may derive sub-linear regret in terms of number of 
restarts. 



• Categorical problems
– Contamination control (Hu et al, 2010): 25 binary variables and >3.35 × 10! configurations
– Pest control (Oh et al, 2019): 25 variables, 5 choices each and > 2.98 × 10"! configurations
– Weighted maximum satisfiability: 60 binary variables and > 1.15 × 10"# configurations

• Mixed problems
– Func2C (2 categorical and 2 continuous) and Func3C (3 categorical and 3 continuous) (Ru et 

al, 2020a)
– Hyperparameter tuning of the XGBoost model
– 53-dimensional Ackley with 50 binary and 3 continuous dimensions
– 200-dimensional Rosenbrock with 100 binary and 100 continuous dimensions
– Black-box adversarial attack on CIFAR-10 on a sparse attack setup:

• Need to choose the pixel location (categorical dimension) and the amount of noise to inject (continuous dimension)
• 43 categorical dimension with 15 choices each, and 43 continuous dimensions.

Experiments
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Results
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Summary
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• CASMOPOLITAN
– Effective BO method applicable for high-dimensional problems that are categorical or mixed in nature
– Use a combination of trust-region-based local optimization and tailored kernel to adapt to the setup
– Features theoretical guarantee and state-of-the-art empirical performance

• Future Directions
– Other types of structured search space: e.g., graphs, trees, conditional search spaces
– Improvements on theories, e.g., simplifying assumptions in the certain combinatorial problems leading to 

better bounds

• Paper Link: https://arxiv.org/pdf/2102.07188.pdf
• Code: https://github.com/xingchenwan/Casmopolitan. 
• Email: xwan@robots.ox.ac.uk


