

38th International Conference on Machine Learning, ICML 2021

Meta-Learning Bidirectional Update Rules

Mark Sandler

Max Vladymyrov

Andrey Zhmoginov

Nolan Miller

Andrew Jackson

Tom Madams

Blaise Agüera y Arcas

Stochastic Gradient Descent

- Requires a predefined loss function computed for every iteration.
- Synapse update is computed via backpropagation of the loss function.
- Optimization procedure is **independent** from the dataset.

SGD using two-state neurons

Backpropagation can be equivantly reformulated with generalized two-state neurons a_j^c where j is a layer and $c \in \{0,1\}$ is a state.

Forward pass:
$$a_j^c \leftarrow \sigma(fa_j^c + \eta \sum_{i,d} w_{ij}^c \nu^{cd} a_i^d)$$

Backward pass:
$$a_i^c \leftarrow \sigma \left(f a_i^c + \eta \sum_{j,d} w_{ji}^c \mu^{cd} a_j^d \right)$$

Weights update:
$$w^c_{ij} \leftarrow \tilde{f} w^c_{ij} + \tilde{\eta} \sum_{e,d} a^e_i \tilde{\nu}^{ec} \cdot \tilde{\mu}^{cd} a^d_j$$

Generalized formulation allows for *more than two* neuron states.

Forward pass:

$$a_j^c \leftarrow \sigma(fa_j^c + \eta \sum_{i,d} w_{ij}^c \nu^{cd} a_i^d)$$

Backward pass:
$$a_i^c \leftarrow \sigma \left(f a_i^c + \eta \sum_{j,d} w_{ji}^c \mu^{cd} a_j^d\right)$$

Weights update: $w_{ij}^c \leftarrow \tilde{f} w_{ij}^c + \tilde{\eta} \sum a_i^e \tilde{\nu}^{ec} \cdot \tilde{\mu}^{cd} a_j^d$

Distinct forward and backward synapses (removing weight transport problem).

Forward pass:
$$a_j^c \leftarrow \sigma(fa_j^c + \eta \sum_{i,d} w_{ij}^c \nu^{cd} a_i^d)$$

Forward pass:
$$a_j^c \leftarrow \sigma(fa_j^c + \eta \sum_{i,d} w_{ij}^c \nu^{cd} a_i^d)$$

Backward pass: $a_i^c \leftarrow \sigma(fa_i^c + \eta \sum_{j,d} w_{ji}^c \mu^{cd} a_j^d)$

Weights update:
$$w^c_{ij} \leftarrow \tilde{f} w^c_{ij} + \tilde{\eta} \sum_{e,d} a^e_i \tilde{\nu}^{ec} \cdot \tilde{\mu}^{cd} a^d_j$$

Meta-learned *transform* matrices for interaction between the neuron states.

Forward pass:
$$a_j^c \leftarrow \sigma(fa_j^c + \eta \sum_{i,d} w_{ij}^c \nu^{cd} a_i^d)$$

Forward pass:
$$a_j^c \leftarrow \sigma(fa_j^c + \eta \sum_{i,d} w_{ij}^c \nu^{cd} a_i^d)$$

Backward pass: $a_i^c \leftarrow \sigma(fa_i^c + \eta \sum_{j,d} w_{ji}^c \mu^{cd} a_j^d)$

Weights update:
$$w_{ij}^c \leftarrow \tilde{f} w_{ij}^c + \tilde{\eta} \sum_{e,d} a_i^e \tilde{\nu}^{ec} \cdot \tilde{\mu}^{cd} a_j^d$$

Non-linear activations for forward and backward pass.

Forward pass:
$$a_j^c \leftarrow \sigma(fa_j^c + \eta \sum_i \sigma(fa_j^c))$$

Forward pass:
$$a_j^c \leftarrow \sigma(fa_j^c + \eta \sum_{i,d} w_{ij}^c \nu^{cd} a_i^d)$$

Backward pass: $a_i^c \leftarrow \sigma(fa_i^c + \eta \sum_{j,d} w_{ji}^c \mu^{cd} a_j^d)$

Weights update:
$$w^c_{ij} \leftarrow \tilde{f} w^c_{ij} + \tilde{\eta} \sum_{e,d} a^e_i \tilde{\nu}^{ec} \cdot \tilde{\mu}^{cd} a^d_j$$

Meta-learned keep and update parameters for neuron update.

Forward pass:
$$a_j^c \leftarrow \sigma(fa_j^c + \eta \sum_{i,d} w_{ij}^c \nu^{cd} a_i^d)$$

Backward pass:
$$a_i^c \leftarrow \sigma \left(f a_i^c + \eta \sum_{j,d} w_{ji}^c \mu^{cd} a_j^d\right)$$

Weights update:
$$w^c_{ij} \leftarrow \tilde{f} w^c_{ij} + \tilde{\eta} \sum_{e,d} a^e_i \tilde{\nu}^{ec} \cdot \tilde{\mu}^{cd} a^d_j$$

No more loss function. Feedback is passed directly to one of the states.

Forward pass:
$$a_j^c \leftarrow \sigma(f a_j^c + \eta \sum_{i,d} w_{ij}^c \nu^{cd} a_i^d)$$

Backward pass:
$$a_i^c \leftarrow \sigma \left(f a_i^c + \eta \sum_{j,d} w_{ji}^c \mu^{cd} a_j^d\right)$$

Weights update:
$$w^c_{ij} \leftarrow \tilde{f} w^c_{ij} + \tilde{\eta} \sum_{e,d} a^e_i \tilde{\nu}^{ec} \cdot \tilde{\mu}^{cd} a^d_j$$

Forward pass:
$$a_j^c \leftarrow \sigma(fa_j^c + \eta \sum_{i,d} w_{ij}^c \nu^{cd} a_i^d)$$

Backward pass:
$$a_i^c \leftarrow \sigma \left(f a_i^c + \eta \sum_{j,d} w_{ji}^c \mu^{cd} a_j^d \right)$$

Weights update:
$$w_{ij}^c \leftarrow \tilde{f}w_{ij}^c + \tilde{\eta}\sum_{e,d} a_i^e \tilde{\nu}^{ec} \cdot \tilde{\mu}^{cd}a_j^d$$

Multistate synapses.

Forward pass: $a_j^c \leftarrow \sigma(fa_j^c + \eta \sum_{i,d} w_{ij}^c \nu^{cd} a_i^d)$

Backward pass: $a_i^c \leftarrow \sigma \left(f a_i^c + \eta \sum_{j,d} w_{ji}^c \mu^{cd} a_j^d\right)$

Weights update: $w_{ij}^c \leftarrow \tilde{f} w_{ij}^c + \tilde{\eta} \sum_{e,d} a_i^e \tilde{\nu}^{ec} \cdot \tilde{\mu}^{cd} a_j^d$

Meta-learned *transform* matrices for interaction between the neuron and synapse states.

Forward pass: $a_j^c \leftarrow \sigma(fa_j^c + \eta \sum_{i,d} w_{ij}^c \nu^{cd} a_i^d)$

Backward pass: $a_i^c \leftarrow \sigma \left(f a_i^c + \eta \sum_{j,d} w_{ji}^c \mu^{cd} a_j^d \right)$

Weights update: $w_{ij}^c \leftarrow \tilde{f} w_{ij}^c + \tilde{\eta} \sum_{e,d} a_i^e \tilde{\nu}^{ec} \cdot \tilde{\mu}^{cd} a_j^d$

Meta-learned keep and update parameters for synapse update.

Forward pass: $a_j^c \leftarrow \sigma(fa_j^c + \eta \sum_{i,d} w_{ij}^c \nu^{cd} a_i^d)$

Backward pass: $a_i^c \leftarrow \sigma(fa_i^c + \eta \sum_{i,d} w_{ji}^c \mu^{cd} a_j^d)$

Weights update: $w_{ij}^c \leftarrow \tilde{f} w_{ij}^c + \tilde{\eta} \sum_{e \ d} a_i^e \tilde{\nu}^{ec} \cdot \tilde{\mu}^{cd} a_j^d$

States	 k neuron states. k synapse states (possibly asymmetric).
Feedback	Passed directly to the final layer.
Forward pass	 - All states are updated via learnable transform matrix. - Same activation functions for each state. - Keep and update are learned parameters.
Backward pass	 All states are updated via learnable transform matrix. Same activation functions for each state. Keep and update are learned parameters.
Synapse update	- All states from presynaptic and postsynaptic are mixed together Keep and update are learned parameters.

Meta-learning BLUR

- Prediction: use first state of the last layer of a given unroll.
- Train: compute loss at a given unroll number.
- Test: run validation batch through learned synapses and meta-parameters.
- Optimize: using SGD or CMA-ES.

Meta-generalization of BLUR

Conclusions

- BLUR defines a meta-learned synapse update rules that has very mild assumptions on the inner-loop:
 - no loss functions,
 - no explicit gradients.
- Trained with SGD or CMA for a fix number of unrolls.
- BLUR generalizes SGD:
 - multistate neurons,
 - asymmetric, multistate synapses,
 - backward activations and normalization.
- BLUR is meta-generalizable:
 - unseen datasets (MNIST → Fashion),
 - o novel input data sizes $(10x10 \rightarrow 28x28)$,
 - novel architectures (deeper → shallower).