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Molecule Representations

* Understanding properties of molecules i1s important in a variety of applications
* Drug discovery, material discovery

* Molecule representations
1D SMILES

* 2D Molecular graphs

* A more natural and intrinsic representations: 3D conformations
* Determines its biological and physical activities
* e.g., charge distribution, steric constraints, and interaction with other molecules

C=CO H_ _C

1D SMILES 2D Graph 3D Conformation



Conformation Prediction

* For real-world molecules, computing 3D structures 1s expensive

* We study how to predict valid and stable conformations from molecular graph

* Molecular graph G: 2D atom-bond graph
 Conformation R: atomic 3D coordinates
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Limitation of previous works & Motivation

 [Likelihood of conformations is not rotation and translation invariant!.
Distance based methods? generate outputs (distances) that are proxies

of the actual desired object (atomic coordinates)

* This motivates us to pursue an algorithm that (C1) generates
conformations within a single stage, and (C2) preserves the roto-

translation equivariance of conformations.

"Mansimov, Elman, et al. "Molecular geometry prediction using a deep generative graph neural network." Scientific reports 9.1 (2019): 1-13.
2Simm, Gregor NC, and José Miguel Hernandez-Lobato. “A generative model for molecular distance geometry.” arXiv preprint arXiv:1909.11459 (2019).
3Minkai Xu, Shitong Luo, Yoshua Bengio, Jian Peng, and Jian Tang. Learning neural generative dynamics for molecular conformation generation. ICLR 2021 4



Our Solution: ConfGF (ICML’ 21)

* Inspired by molecular dynamics, which use force fields for simulation, we seek
to estimate the pseudo forces acting on atoms, i.c., Sg(R) = Vglogp(R | G).

* Samples are generated by iteratively applying the pseudo forces to a randomly
initialized 3D structure via Langevin dynamics (satisfy C1)

* We develop an algorithm to effectively estimate these gradients and meanwhile
preserve their roto-translation equivariance (satisty C2)
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Challenge: 3D Rotation Equivariance

Fop(x)=poF(x)

The equation says that applying
the p on the mput has the same
effect as applying it to the output.

A GIF 1llustrating the rotation
equivariance of atomic forces.
Two red arrows stand for forces
acting on atoms, which rotate
together with the molecule.
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Our Solution: Gradient propagation via chain rule

 We observe that interatomic distances are differentiable w.r.¢. atomic coordinates.

* We estimate gradient fields of interatomic distances, i.e., Sg(d) = V logp(d | G) via

denoising score matching!

* We then backpropagate gradients from d to R via chain rule:
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Generation

* Given the current conformation R, we calculate atomic gradients by propagating
gradients from d to R via chain rule: i

Vi,so(R)i = ) = so(d)ij - (ri — 1)
. . jeN(H)
* This process can be viewed as calculating resultant force on atoms

* The conformations are sequentially updated based on atomic gradients
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Algorithm 1 Annealed Langevin dynamics sampling

input molecular graph G, noise levels {o;}~_;, the small-

est step size €, and the number of sampling steps per
noise level 7.
1: Initialize conformation R from a prior distribution
2: fori < 1to Ldo
3 ;¢ €-02)o} > o is the step size.
4: fort<+ 1toT do
5 di—1 = ga(Ri-1) > get distances from R;_1
0.3 | ChainRule H [#0-2]+0.3]+0.1 — « Attraction Force 6: So(Ri—1,04) = convert(sg(d;—1,0:)) >Eq.3.
7.
8

: Draw z; ~ N (0,1
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R: + Ri—1 + aiso(Ri—1,0:) + \/T%Zt
9: end for
so(d) sg(R) 10 Rgy+« Ry
. . . . . 11: end for
Fig. Score estimation via chain rule output Generated conformation R




Demo

Starting from a random 1nitialization, the conformation 1s
sequentially updated with the gradient information of

atomic coordinates calculated from the score network
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Experiments

e Data Sets

* GEOM: > 33 million molecular conformers by MIT group, including both small

molecules in QM9 and medium-sized drug-like molecules

 Baselines

* CVGAE (Mansimov et al. 2019): learning atom representations with GNNs and then

predicting the coordinates of atoms

* GraphDG (Stmm&Hernandez-Lobato, 2020) and CGCF (Xu et al., 2021): generating

the pairwise distances between atoms and then generating conformers based on distances

» RDKit: a classical Euclidean Distance Geometry-based approach
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Evaluation Metrics

* Discrepancy between two conformations: Root—Mean—Square Deviation (RMSD)

RMSD(R, R) ( ZHR RH2)

* Coverage (COV): the fraction of conformatlons in the reference set that are

matched by at least one conformation in the generated conformations

COV(Sy4(9),S:(9)) =

{R €S,|RMSD(R,R) < 6, R’ € SQH

* Matching (MAT): measure the average distance of the reference conformations

with their nearest neighbors in the generated conformations

MAT(S,(9),5:(0)) = =

S R’€S,

min RMSD(R, R).
RcS,
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Results

Table 1: COV and MAT scores on GEOM-QM9 and GEOM-Drugs datasets. The threshold ¢ of COV
score is 0.5A for GEOM-QM9 and 1.25A for GEOM-Drugs following Xu et al. [41]. (1): the higher

the better. (]): the lower the better.

GEOM-QM9 GEOM-Drugs
COV (%, 1) MAT (A, ) COV (%, 1) MAT (A, |)
Method Mean Median Mean Median | Mean Median Mean  Median
RDKIT 83.26  90.78 0.3447 0.2935 | 60.91 65.70 1.2026 1.1252
CVGAE 0.09 0.00 1.6713 1.6088 0.00 0.00 3.0702 2.9937
GRAPHDG | 73.33 84.21 0.4245 0.3973 8.27 0.00 1.9722 1.9845
CGCF 1152 80.40 0.4206 0.3903 | 54.19 56.35 L2575 1.2356
CONFGF 88.49 94.13 0.2673 0.2685 | 62.15 70.93 1.1629 1.1596

ConfGF achieves the state-of-the-art performance on all four metrics
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Conformations
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Code will be released at:
https://github.com/DeepGraphlLearning

Thanks for listening!

Also feel free to contact me later at chence.shi@umontreal.ca


https://github.com/DeepGraphLearning

Take-away Messages

* The one-stage framework, which avoid generating proxies of the atomic
coordinates (distances), greatly enhance the performance of conformation

generation

* Interatomic distances are continuously differentiable w.7¢. atomic coordinates.
Gradients can be propagated from distances to Cartesian Coordinates, and the

roto-translation equivariance 1s preserved.

* The framework is very general and can be applied to other systems, e.g., proteins
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