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Private Clustering

Clustering 
Algorithm

Points in Rd

Centers

X

k-Means
Given n points x1, ..., xn in Bd and k, find
c1, ..., ck that minimize ∑i∈[n] minj∈[k] ||xi - 
cj||
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Clustering in Central DP

(ε, δ)-Differential Privacy 
[Dwork et al.’06]
For every set of outputs S,
Pr[A(X) ∈ S] ≤ eε・Pr[A(X’) ∈ S] + 
δ

Clustering 
Algorithm

Points in Rd Centers

Clustering 
Algorithm

X
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Clustering in Local DP

ε-Local DP
[Kasiviswanathan et al.’08]
For every set of outputs S,
Pr[A(xi) ∈ S] ≤ eε・Pr[A(x’i) ∈ S]

Clustering 
Algorithm

Points in Rd Centers

Clustering 
Algorithm

xi

x’i
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Prior Works & Our Results

k-Means

Non-Private Central DP

Additive errors ≈ 
poly(dk log n)

6.359
[Ahmadian et al.’17]

O(1)
[Kaplan-Stemmer’18]

6.359
[GKM’20]

[GKM20] 
“Private approx ratio ≈ 
non-private approx ratio”

Central DP Local DP One-Round 
Local DP

6.359
[our work]

O(1)
[Stemmer’20]

Additive errors ≈
√n ・poly(dk log n)
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Approximation Ratio

ε-local DP poly-time algo:  w*(1 + ɣ)-approx, add. error √n・poly(dk log n)

w* = best non-private approximation ratio



Framework of [GKM’20]

Random Projection
(Dimensionality Reduction)
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Random Projection
(Dimensionality Reduction)

Cluster Identification
(Low Dimension)

Framework of [GKM’20]
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Random Projection
(Dimensionality Reduction)

Cluster Identification
(Low Dimension)

Center Computation
(High Dimension)

Framework of [GKM’20]
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Our Algorithm

Random Projection
(Dimensionality Reduction)

Cluster Identification
(Low Dimension)

Center Computation
(High Dimension) k-Means

ε-local DP poly-time algo:  w*(1 + ɣ)-approx, add. error √n・poly(dk log n)

w* = best non-private approximation ratio

Project to d’ ≈ log(k) dimensions

[Makarychev–Makarychev
-Razenshteyn’19]

Suffices to find (1 + 0.5ɣ)w*-approx 
in lower dimension
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Random Projection
(Dimensionality Reduction)

Cluster Identification
(Low Dimension)

Center Computation
(High Dimension) k-Means

ε-local DP poly-time algo:  w*(1 + ɣ)-approx, add. error √n・poly(dk log n)

w* = best non-private approximation ratio

d’ ≈ log(k)
Our Algorithm
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Private Coreset [Our work]
ε-DP algo that produces a set of points Y such 
that, for any set Z of k centers, 

costZ(Y) = (1土0.1ɣ)・costZ(X) 土 √n poly(k)・2O(d’)

Run best non-private approx algo on Y

Clusters C1, ..., Ck ⊆ X



Random Projection
(Dimensionality Reduction)

Cluster Identification
(Low Dimension)

Center Computation
(High Dimension) k-Means

ε-local DP poly-time algo:  w*(1 + ɣ)-approx, add. error √n・poly(dk log n)

w* = best non-private approximation ratio

d’ ≈ log(k)

Net Tree  [Har-Peled&Mendel’06]

● Hierarchical partitioning of the space 
● Each level is a finer and finer net

○ # of children = 2O(d’) = poly(k)

Our Algorithm
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Coreset Construction



Random Projection
(Dimensionality Reduction)

Cluster Identification
(Low Dimension)

Center Computation
(High Dimension) k-Means

ε-local DP poly-time algo:  w*(1 + ɣ)-approx, add. error √n・poly(dk log n)

w* = best non-private approximation ratio

d’ ≈ log(k)

Sketching 
⇒ estimate 
# points in 
each node

Net Tree  [Har-Peled&Mendel’06]

● Hierarchical partitioning of the space 
● Each level is a finer and finer net

○ # of children = 2O(d’) = poly(k)

Our Algorithm
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Algorithm Outline:
● Start at the root
● At each level, explore τ = poly(k)・2O(d’) nodes 

with largest # of points
● Each node has one “representative” in coreset

Coreset Construction



Random Projection
(Dimensionality Reduction)

Cluster Identification
(Low Dimension)

Center Computation
(High Dimension) k-Means

ε-local DP poly-time algo:  w*(1 + ɣ)-approx, add. error √n・poly(dk log n)

w* = best non-private approximation ratio

Sketching technique + 
[Duchi-Jordan-Wainwright’13]

Estimate average of points 
assigned to each node explored

Estimated cluster center = weighted average

Our Algorithm
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k-means center = average of all points 
in nodes mapped to that partition



Conclusions

Open Questions

● One-Round Local Model: DP Clustering Algo for k-Means
○ Approximation ratio arbitrarily close to non-private 
○ Additive error: √nd・poly(k log n) 

● Shuffle Model: DP Clustering Algo for k-Means
○ Approximation ratio arbitrarily close to non-private 
○ Additive error: poly(dk log n)

● Local Model
○ k-median: O(1)-approx with add. error n0.51 in O(1) rounds [Stemmer’20]

○ Densest ball: O(1)-approx with add. error n2/3+o(1) in O(1) rounds [Kaplan-Stemmer’18]

○ One Round? Tight Approximation Ratio? Tight Additive Error for Densest Ball?
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