Locally Private k-Means in One Round

Alisa Chang, Badih Ghazi, Ravi Kumar, Pasin Manurangsi Google

Private Clustering

k-Means

Given n points x_1 , ..., x_n in B_d and k, find c_1 , ..., c_k that minimize $\sum_{i \in [n]} \min_{j \in [k]} ||x_i - c_i||^2$

Clustering in Central DP

(ϵ , δ)-Differential Privacy [Dwork et al.'06] For every set of outputs S, $Pr[A(X) \in S] \le e^{\epsilon} \cdot Pr[A(X') \in S] +$

Clustering in Local DP

Prior Works & Our Results

Approximation Ratio

ε-local DP poly-time algo: $w^*(1 + \gamma)$ -approx, add. error \sqrt{n} poly(dk log n)

Framework of [GKM'20]

Random Projection

(Dimensionality Reduction)

Framework of [GKM'20]

Random Projection

(Dimensionality Reduction)

Cluster Identification

(Low Dimension)

Framework of [GKM'20]

Random Projection

(Dimensionality Reduction)

Cluster Identification

(Low Dimension)

Center Computation

(High Dimension)

Random Projection

(Dimensionality Reduction)

Cluster Identification (Low Dimension)

Center Computation

(High Dimension)

Project to d' ≈ log(k) dimensions

[Makarychev–Makarychev -Razenshteyn'19]

Suffices to find (1 + 0.5)w*-approx in lower dimension

k-Means

 ε -local DP poly-time algo: w*(1 + γ)-approx, add. error $\sqrt{n \cdot poly}$ (dk log n)

ď ≈ log(k)

Random Projection

(Dimensionality Reduction)

Cluster Identification

(Low Dimension)

Center Computation

(High Dimension)

k-Means

 ε -local DP poly-time algo: w*(1 + γ)-approx, add. error $\sqrt{n \cdot poly}$ (dk log n)

Random Projection

(Dimensionality Reduction)

Cluster Identification

(Low Dimension)

Center Computation

(High Dimension)

Coreset Construction

 $d' \approx \log(k)$

Net Tree [Har-Peled&Mendel'06]

- Hierarchical partitioning of the space
- Each level is a finer and finer net
 - \circ # of children = $2^{O(d')}$ = poly(k)

k-Means

ε-local DP poly-time algo: w*(1 + γ)-approx, add. error √n•poly(dk log n)

Random Projection

(Dimensionality Reduction)

Cluster Identification

(Low Dimension)

Center Computation

(High Dimension)

Coreset Construction

 $d' \approx \log(k)$

Net Tree [Har-Peled&Mendel'06]

- Hierarchical partitioning of the space
- Each level is a finer and finer net
 - \circ # of children = $2^{O(d')}$ = poly(k)

Algorithm Outline:

Sketching ⇒ estimate # points in

each node

- Start at the root
- At each level, explore τ = poly(k)•2^{O(d')} nodes with largest # of points
- Each node has one "representative" in coreset

k-Means

 ε -local DP poly-time algo: w*(1 + γ)-approx, add. error $\sqrt{n \cdot poly}$ (dk log n)

Random Projection

(Dimensionality Reduction)

Cluster Identification

(Low Dimension)

Center Computation

(High Dimension)

 ϵ -local DP poly-time algo: w*(1 + γ)-approx, add. error $\sqrt{n \cdot poly}$ (dk log n)

Conclusions

- One-Round Local Model: DP Clustering Algo for k-Means
 - Approximation ratio arbitrarily close to non-private
 - Additive error: √nd poly(k log n)
- Shuffle Model: DP Clustering Algo for k-Means
 - Approximation ratio arbitrarily close to non-private
 - Additive error: poly(dk log n)

Open Questions

- Local Model
 - k-median: O(1)-approx with add. error n^{0.51} in O(1) rounds [Stemmer'20]
 - One Densest ball: O(1)-approx with add. error $n^{2/3+o(1)}$ in O(1) rounds [Kaplan-Stemmer'18]
 - One Round? Tight Approximation Ratio? Tight Additive Error for Densest Ball?