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Clustering in Central DP
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Clustering in Local DP
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Prior Works & Our Results

Approximation Ratio

. One-Round
Non-Private Central DP Central DP Local DP
Local DP
k-Means 6.359 o(1) 6.359 o®1) 6.359
[Ahmadian et al."17] [Kaplan-Stemmer’18] [GKM’'20] [Stemmer’'20] e
L J
[GKM20] Y \ Y 7
“Private approx ratio = Additive errors = Additive errors =
non-private approx ratio” poly(dk log n) Vn -poly(dk log n)

g-local DP poly-time algo: w*(1 + y)-approx, add. error V'n-poly(dk log n)

w* = best non-private approximation ratio
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Framework of [GKM’20]

Random Projection
(Dimensionality Reduction)
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Framework of [GKM’20]

Random Projection
(Dimensionality Reduction)

Cluster Identification
(Low Dimension)

Center Computation
(High Dimension)
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Our Algorithm

Random Projection

Project to d’ = log(k) dimensions
(Dimensionality Reduction)

[Makarychev—-Makarychev
-Razenshteyn’19]

Cluster Identification Suffices to find (1 + 0.5y)w*-approx
(Low Dimension) in lower dimension

Center Computation
(High Dimension) k-Means

g-local DP poly-time algo: w*(1 + y)-approx, add. error Vn-poly(dk log n)

w* = best non-private approximation ratio
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Our Algorithm

d’ = log(k)

Private Coreset [Our work]

Random Projection g-DP algo that produces a set of points Y such
(Dimensionality Reduction) that, for any set Z of k centers,
cost,(Y) = (12£0.1y)-cost(X) £ Vn poly(k)-2°

!

Cluster Identification Run best non-private approx algo onY
(Low Dimension) l

Clusters C1, Ck c X

Center Computation
(High Dimension) k-Means

g-local DP poly-time algo: w*(1 + y)-approx, add. error Vn-poly(dk log n)

w* = best non-private approximation ratio
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Our Algorithm

Coreset Construction d’ = log(k)
Net Tree [Har-Peled&Mendel’04]
Random Projection e Hierarchical partitioning of the space
(Dimensionality Reduction) e Eachlevelis afiner and finer net

o  # of children = 2°) = poly(k)

Cluster Identification
(Low Dimension)

Center Computation
(High Dimension) k-Means

g-local DP poly-time algo: w*(1 + y)-approx, add. error Vn-poly(dk log n)

w* = best non-private approximation ratio
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Our Algorithm

Coreset Construction d’ = log(k)

Net Tree [Har-Peled&Mendel’0é]

Random Projection e Hierarchical partitioning of the space

(Dimensionality Reduction) e Eachlevelis a finer and finer net

T o  # of children = 2°@ = poly(k)
= estimate +
# points in
e Algorithm Outline:
Cluster Identification e Start at the root
(Low Dimension) ——»| e Ateachlevel, explore T = poly(k)-2°) nodes
with largest # of points
e Each node has one “representative” in coreset
Center Computation
(High Dimension) k-Means

g-local DP poly-time algo: w*(1 + y)-approx, add. error Vn-poly(dk log n)

w* = best non-private approximation ratio
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Our Algorithm

k-means center = average of all points
Random Projection in nodes mapped to that partition

(Dimensionality Reduction) *

Sketching technique +
[Duchi-Jordan-Wainwright’13]
Estimate average of points

Cluster Identification assigned to each node explored
(Low Dimension) *

Estimated cluster center = weighted average

Center Computation
(High Dimension) k-Means

g-local DP poly-time algo: w*(1 + y)-approx, add. error Vn-poly(dk log n)

w* = best non-private approximation ratio
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Conclusions

e One-Round Local Model: DP Clustering Algo for k-Means
o Approximation ratio arbitrarily close to non-private
o Additive error: Vnd-poly(k log n)

e Shuffle Model: DP Clustering Algo for k-Means
o Approximation ratio arbitrarily close to non-private
o Additive error: poly(dk log n)

Open Questions

e [ocal Model
o k-median: O(1)-approx with add. error n®°"in O(1) rounds [Stemmer'20]
o Densest ball: O(1)-approx with add. error n#3+°™ in O(1) rounds [Kaplan-Stemmer’18]
o One Round? Tight Approximation Ratio? Tight Additive Error for Densest Ball?
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