Differentially Private Aggregation in Shuffle Model:

Almost Central Accuracy in Almost a Single Message

Badih Ghazi Google Research Mountain View

Google Research Mountain View

Ravi Kumar Pasin Manurangsi

Google Research Mountain View Rasmus Pagh Amer Sinha

U. Copenhagen & Google Research

Google San Bruno

Distributed Analytics

Differentially Private Aggregation in Shuffle Model

Distributed Analytics

Differentially Private Aggregation in Shuffle Model

Differential Privacy [Dwork et al.]

(ε , δ)-Differential Privacy [Dwork et al.'06] For all S, and two neighboring X, X' Pr[A(X) \in S] $\leq e^{\varepsilon} \cdot Pr[A(X') \in$ S] + δ

Differentially Private Aggregation in Shuffle Model

Differential Privacy: Central Model [Dwork et al.]

Differential Privacy: Local Model [Kasiviswanathan et al.]

Differential Privacy: Shuffled Model [Bittau et al., Erlingsson et al.]

Real Summation		Error	# messages per user	Bits per message
ε-Central DP	Laplace Mechanism [Dwork et al.'06, Ghosh et al.'12]	Θ(1/ε)	1	O(log n)
ε-Local DP	Randomized Response [Warner'65, Beimel et al.'08]	Θ _ε (√n)	1	O(log n)
	[Balle et al.' 19]	$\Theta_{\epsilon}(n^{1/6})$	1	O(log n)
ε,δ)-Shuffled DP				

Shuffled Model: Multi-Message Setting

Real Summation		Error	# messages per user	Bits per message
ε-Central DP	Laplace Mechanism [Dwork et al.'06, Ghosh et al.'12]	Θ(1/ε)	1	O(log n)
ε-Local DP	Randomized Response [Warner'65, Beimel et al.'08]	Θ _ε (√n)	1	O(log n)
ζε,δ)-Shuffled DP	[Balle et al.' 19]	Θ _ε (n ^{1/6})	1	O(log n)
	[Cheu et al.'19]	$O\left(\frac{\log(1/\delta)}{\epsilon}\right)$	O _ε (√n)	1
	[Balle et al.'20, Ghazi et al.' 20]	Ο(1/ε)	$O\left(1 + \frac{\log(1/\delta)}{\log n}\right)$	O(log n)
	This work	Ο(1/ε)	$1 + O_{\epsilon} \left(\frac{\log(1/\delta)}{\sqrt{n}} \right)$	O(log n)
ϵ -Shuffled DP	[Ghazi et al.'20]	Ο(1/ε ^{1.5})	O _ε (log ³ n)	O(log log n)

Longer talk available here