PODS: Policy Optimization via Differentiable Simulation

Miguel Zamora*, Momchil Peychev, Sehoon Ha,
Martin Vecheyv, Stelian Coros

CRL =

FINGER PIVOTING SLIDING

*OpenAl: Learning Dexterous In-Hand Manipulation

FINGER GAITING

-

https://openai.com/blog/learning-dexterity/

Black-box

Simulators

St+1

[Gool:

to learn policies?

~

How can we best use differentiable simulators

J

\
4 I S
— St+1
St —> Differentiable
Simulators ds;q
ag —> —-
- J da,

Differentiable Cloth

Simulation for Inverse Enqgine for Autonomous Robotic Cutting
Problems
I

: 5
‘Target digtance 5.5cm
ADD: Analytically Differentiable Dynamics for Multi-Body Systems

with Frictional Contact

https://github.com/yuanming-hu/difftaichi
https://dl.acm.org/doi/abs/10.1145/3414685.3417766
https://papers.nips.cc/paper/2019/hash/28f0b864598a1291557bed248a998d4e-Abstract.html
https://papers.nips.cc/paper/2019/hash/28f0b864598a1291557bed248a998d4e-Abstract.html
https://papers.nips.cc/paper/2019/hash/28f0b864598a1291557bed248a998d4e-Abstract.html
https://www.youtube.com/watch?v=p_vu7shu9Bc&t=11s
https://www.youtube.com/watch?v=p_vu7shu9Bc&t=11s

Differentiable simulation as a layer?

Policy Diff Si
(ann) - om (Qoo“a Sy
d —
-SLD ® g g g D __O"[f(ai;si)}—’ seoe ST-1 o g 8 g D L,[f(aj, sy)]_,
e ey
Tty l Ttg
g RL Objective \A
J(mg) = /p(SO)VM(SO)dSO «
g > J
Policy Gradient: VgJ(mg) = /p(so)VGV“"”(so)dso. Effectively BPTT:
S

« Only first order
« Exploding / Vanishing gradients

k
1 T

Improve a to get V7 (sq) < V%(sp)
PODS /

q — n dvd(SQ)
Policy Improvement: V7T (s0) = V%(s0) - e daTag
&:[ao,al,...,aN_l} / /
4]]])
dVe(sg) oVe ove
Policy I Diff sim da _ oa = s
S; a;
ﬁ[To(s) l '[f(ai, i) l \ Info provided by diff sim y

Second order improvement

! dV%(sp)
da

Policy update

| . N1 a = Tg + Q4
Lo = EZZ§H7T9(SM)_@MH2 — e

[Check the paper for more detoils!]

Fine manipulation tasks

2D Pendulum 3D Pendulum
Stop as fast as Stop at origin . _
oossible 3D Double Pendulum Discretized Rope

Stop at origin Stop at origin

PODS - Performance

2D Simple Pendulum

(|

2 3 1
Steps (x 10%)

2D Simple Pendulum (Stop Origin)

2 3 1
Steps (x10%

3D Simple Pendulum

Despite additional computations
PODS is 10x to 30x faster

0 1 2 3

Steps (x 10%)

3D Simple Pendulum (Stop Origin)

3D Double Pendulum

P

S

1 6 3
Steps (x10°)

3D Double Pendulum (Stop Origin)

—

—3,500
—5,0005 1 2 3 1 —8,0005 3 6 9 12
Steps (x10% Steps (x10%
e SAC wsmm PPO GPS PODS 4000 === PODS 500

Cable driven payload (Stop Origin)

Reward

Steps (x10%)

.0+ Discrete Rope (Stop Origin)

rlr

—0.63H
S -1.25
o
o

—1.8%

—925 ' ' ! L

()] 3 6 9 12

Steps (x 109

PODS - Complexity

Intermediate
state

Sampled initial

Target location

10> Laying cloth with friction

Reward

Rollout Time horizon: 60 steps

_ 998 == PODS batch of 16 rollouts. TT = 82s
— PODS batch of 32 rollouts. TT = 84s
- PODS batch of 64 rollouts. TT = 90s
—= SAC. TT = 159s

0 10 20 30
Steps (x10°)

Conclusion

« Simple, fast and principled method
« Better exploit differentiable sims
« Qutperformed baselines w.r.t. sample

efficiency and compute time.

Future work

« Interleave with existing RL methods
(exploration).

« Leverage Inverse-RL to obtain surrogate

reward function for non-smooth rewards. Thanks!

« Find ceiling of complexity!

