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How can we best use differentiable simulators
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Differentiable simulation as a layer?
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« Only first order
« Exploding / Vanishing gradients
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[Check the paper for more detoils!]




Fine manipulation tasks
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PODS - Performance
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PODS - Complexity
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Conclusion

« Simple, fast and principled method
« Better exploit differentiable sims
« Qutperformed baselines w.r.t. sample

efficiency and compute time.

Future work

« Interleave with existing RL methods
(exploration).

« Leverage Inverse-RL to obtain surrogate

reward function for non-smooth rewards. Thanks!

« Find ceiling of complexity!



