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Motivation: The role of neural networks in the RL Renaissance

The Reinforcement Learning Renaissance is a�ributed to the integration with Deep Neural
Networks.

(a) DQN (2013) (b) AlphaZero (2018) (c) AlphaStar (2019)

So why State-Of-The-Art Deep RL papers still develop their algorithms on old-fashioned
neural-network architectures?

Neural-network architecture choices for reinforcement learning remain relatively under-explored
(Sinha et al. 2020).
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Motivation: Actor-Critic methods

A reminder: the Q-function and the RL objective

Find a policy that “maximizes" the Q-function over its state distribution

π∗ = arg max
π

Es∼dπ
[
Ea∼π(·|s) [Qπ(s, a)]

]
(1)

Where

Qπ(s, a) = E

[ ∞∑
t=0

γtR(st, at)

∣∣∣∣∣at ∼ π(·|st), s0 = s, a0 = a

]
. (2)

SOTA o�-policy RL algorithms estimates the Q-function with a neural model.

Estimating the Q-function is not the goal of the algorithm, rather maximizing it.

Its input is elements from the Cartesian product of the state and action domains.
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Motivation: Learning the Q-function

A reminder: optimizing the policy with the Q-function estimation

A stochastic policy with neural-network based parameterization is

πφ(a|s) = µφ(ε|s)s.t.ε ∼ pε, (3)

To optimize πφ we apply gradient ascent steps in the action gradient direction of the
Q-function

φ← φ+ ηE{s∼Dε∼pε}
[∇φµφ(ε|s)∇aQπθ (s, µφ(ε|s))] (4)

To optimize π we need to find the Q-function derivative with respect to the action input.

We do not directly learn∇aQπ .

Is∇aQπθ a su�icient approximation to∇aQπ when Qπ is approximated with a neural
model Qπθ ?
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Motivation: the need for accurate gradient estimation

Proposition 1 rephrased

Under su�icient conditions, be�er gradient approximation allows larger policy
optimization step.

If there exists a gradient estimation g(s, a) and 0 < α < 1 s.t.

‖∇φ · g −∇φ · ∇aQπ‖ ≤ α‖∇φ · ∇aQπ‖ (5)

then the ascent step φ′ ← φ+ η∇φ · g with η ≤ 1
k̃

1−α
(1+α)2

guarantees a positive empirical
advantage policy.

To summarize, we wish to find a neural model for the Q-function s.t.

It is suited for processing inputs in the form (s, a), where s serves as a context.

It has good gradient model with respect to the input a.
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Recomposing the Q-function with Hypernetworks

Hypernetwork is an architecture designed to
process a tuple (x, z) and output a value y.

A primary network wθ : Z → Rnw
produces weights.

A dynamic network fwθ(z) : X → Y
outputs the prediction.

z is termed a context or meta variable.

x is termed the base variable.
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Recomposing the Q-function with Hypernetworks

Consider three alternative models:
1. MLP network

I States and actions are concatenated.

2. State-Action Hypernetwork (SA-Hyper)
I State is a meta-variable.

3. Action-State Hypernetwork (AS-Hyper)
I Action is as meta-variable.
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Gradient Analysis

MLP

∇aQπθ (s, a) = W aΛ1(s, a)

(
L−1∏
l=2

W lΛl(s, a)

)
WL

Function of the state only via the diagonal elements - active neurons map.

AS-Hyper
∇aQπθ (s, a) = ∇aw(a)∇wfw(s)

nw � na leads to a large null-space.

SA-Hyper

∇aQπθ (s, a) = W 1(s)Λ1(s, a)

(
L−1∏
l=2

W l(s)Λl(s, a)

)
WL(s)

W l(s) enables higher expressiveness of the gradient.
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Empirical Gradient Analysis

Practically, due to the Temporal-Di�erence (TD) learning bias we cannot hope to
reconstruct the true Q-function scale.

Instead, we use the Cosine Similarity (CS) as a surrogate for measuring the gradient
accuracy.

Empirically low Cosine-Similarity is expected (Ilyas et al., 2019).
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Empirical Results

Algorithms: TD3 and SAC

Environments: Mujoco

Implementation: Authors’ o�icial
implementations

Hyper parameters: Adjust only the
learning rate

Evaluation: 5 di�erent seeds
Comparing di�erent Hypernetwork configuration with TD3
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Empirical Results

We compare the Hypernetwork model to several baselines:
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primary: ResNet with 9M parameters.

dynamic: 1 hidden layer, 256 neurons.

MLP-Standard: 2 hidden layers, 256 neurons.

MLP-Large: 2 hidden layers, 2900 neurons (same
parameter size 9M ).

MLP-Small: 1 hidden layer, 256 neurons (same
dynamic architecture).

ResNet-Features: state features generated by the
Primary (same primary and dynamic
architectures).

Deep-ResNet: 35 Residual Blocks, half parameter
size 2x Slower.

Q-D2RL: Deep Dense model for the Q-function
(Sinha et al., 2020).
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Empirical Results

We compare the Hypernetwork model to several baselines:
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Recomposing the Policy in Meta-RL

Background: Meta-RL

Distribution of di�erent tasks p(T )

Objective: Learning a meta-policy that should generalize over tasks.
Methods:
I PEARL (Rakelly et al., 2019) Learned context c = qν(z|cTi) based on history π(a|s, c)

Lcriticpearl (θ, ν) = ET
[
Eqν(z|cTi )

[
Lcriticsac (θ, ν) +DKL

(
qν(z|cTi)

∣∣p(z))]] (6)

I MAML (Finn et al., 2017) Policy adjusts its weights, no explicit context

∇φJmaml(φ) = E{Ti∼p(T )
πφi
}

[ ∞∑
t=0

Âi,t∇φ log πφi(at|st)

]
(7)

φi is the adjusted weights for task i.
I In practice, o�en we have access to an Oracle-Context that specify the task.
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Recomposing the Policy in Meta-RL

Meta-Policy

Context as a meta-variable

πφ(a|s, c) = πw(c;φ)(a|s) (8)

The primary generates a di�erent policy
for each task.
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A context is added also to the
Q-function’s model

Qπ(s, a, c) ' Qπw(s;θ)(a, c) (9)

The context gradient backpropagates
through the dynamic network.
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Reducing the Gradient Variance

MAML objective with MLP

∇φJ(φ) =
∑
Ti
∑

s∈Ti Âi,s
∇φπφ(s,ci)
πφ(s,ci)

MAML objective with Hypernetwork

∇φJ(φ) =
∑
Ti ∇φw(ci) ·

∑
s∈Ti Âi,s

∇wπw(ci)
(s)

πw(ci)
(s)

The state-dependent part of the gradients∇wπw(ci)(s) is averaged over the task
distribution for each task.

The task dependent gradients of the primary weights∇φw(ci) are averaged over the
task distribution.

The disentanglement reduces the gradient noise and should translate to more accurate
learning steps.
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Reducing the Gradient Variance

We trained meta-policies based on context-MAML:
1. MLP
2. Hypernetwork

We estimated the gradient noise by constructing 50 di�erent uncorrelated gradients and
evaluating the updated policy’s performance.

The variance of the Hypernetwork model is significantly lower than the MLP model
across all tasks and environments
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Empirical Results

Algorithms: MAML, PEARL

Hyper parameters:
Adjust only the learning rate

Implementation:
Authors’ o�icial implementations

Evaluation: 5 di�erent seeds
Tasks:
I Reach a distant point
I Target velocity
I OOD- Out of Distribution
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Empirical Results

Out-Of-Distribution Generalization

Eliminating the adaptation step during
training
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Conclusions

The unique nature of the RL se�ing requires unconventional models.
I Unlike supervised tasks, we care only about the gradient accuracy of our Q-function model.
I The network needs to model the inherent state-action interaction and context-state

interaction in Meta-RL.

Advantages over MLP models
I Be�er estimation of the Q-function gradient which is required to train actor-critic

algorithms.
I Reduces the gradient variance in Meta-RL.
I Outperform in final reward and e�iciency.
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Thank You
Code:

https://github.com/keynans/HypeRL
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