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MOTIVATION: THE ROLE OF NEURAL NETWORKS IN THE RL RENAISSANCE

The Reinforcement Learning Renaissance is attributed to the integration with Deep Neural
Networks.

)

(a) DQN (2013) (b) AlphaZero (2018 (c) AlphaStar (2019)

So why State-Of-The-Art Deep RL papers still develop their algorithms on old-fashioned
neural-network architectures?

Neural-network architecture choices for reinforcement learning remain relatively under-explored
(Sinha et al. 2020).



MoTIVATION: ACTOR-CRITIC METHODS

A reminder: the ()-function and the RL objective

Find a policy that “maximizes" the Q-function over its state distribution
T = arg m;lX Esgr [anw(-|s) [QW(Sv CL)H (1)

Where

Y ar ~ 7(:|s¢), s0 = s,a0 = a| . (2)

Z’Y 3t7at

SOTA off-policy RL algorithms estimates the Q)-function with a neural model.
m Estimating the Q-function is not the goal of the algorithm, rather maximizing it.

m Its input is elements from the Cartesian product of the state and action domains.




MOTIVATION: LEARNING THE Q-FUNCTION

A reminder: optimizing the policy with the Q)-function estimation

A stochastic policy with neural-network based parameterization is
mg(als) = pg(els)s.t.e ~ pe, (3)

To optimize 7y we apply gradient ascent steps in the action gradient direction of the
Q-function

¢ ¢+ nEf 0y [Vong(els) VaQ (5, Ho(els))] (4)
To optimize 7 we need to find the Q-function derivative with respect to the action input.

m We do not directly learn V,Q™.

m Is V,Qj asufficient approximation to V,Q™ when Q™ is approximated with a neural
model Q7 ?



MOTIVATION: THE NEED FOR ACCURATE GRADIENT ESTIMATION

Proposition 1 rephrased

Under sufficient conditions, better gradient approximation allows larger policy
optimization step.

If there exists a gradient estimation g(s,a) and 0 < o < 1 s.t.
Hvtﬁ = V(b Ve QT| < O‘Hﬁcb -V Q™| (5)

then the ascent step ¢ < ¢ +nVy - g withn < %(11;75‘)2 guarantees a positive empirical
advantage policy.
To summarize, we wish to find a neural model for the Q-function s.t.

m It is suited for processing inputs in the form (s, a), where s serves as a context.

m It has good gradient model with respect to the input a.




RECOMPOSING THE Q-FUNCT!ON WITH HYPERNETWORKS

Hypernetwork is an architecture designed to eta variable
process a tuple (z, z) and output a value y. :
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RECOMPOSING THE Q-FUNCT!ON WITH HYPERNETWORKS

Consider three alternative models:
1. MLP network
P States and actions are concatenated.
2. State-Action Hypernetwork (SA-Hyper)
P State is a meta-variable.
3. Action-State Hypernetwork (AS-Hyper)

» Action is as meta-variable.
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GRADIENT ANALYSIS

= MLP

i
VaQ3(s,a) = WeAl(s,a (H WAl (s a)) wk
=2
Function of the state only via the diagonal elements - active neurons map.

m AS-Hyper
Van(S, a) = vaw(a)vwfw(‘S)

Ny > N, leads to a large null-space.

m SA-Hyper

VaQ3(s,a) = W(s)Al(s,a (H W(s)Al(s,a ) ) | WE(s)

W'(s) enables higher expressiveness of the gradient.




EmPIRICAL GRADIENT ANALYSIS

m Practically, due to the Temporal-Difference (TD) learning bias we cannot hope to
reconstruct the true (Q-function scale.

m Instead, we use the Cosine Similarity (CS) as a surrogate for measuring the gradient
accuracy.

m Empirically low Cosine-Similarity is expected (llyas et al., 2019).

0.5 —— SA-Hyper(Ours) -04
— MLP 0.40 - 0.125 - >
" 04 —— AS-Hyper -02 T
b 0.35 - 0.100 - o
g% %A &
1 ~ -0.0 »
P R 0.075 4
5 02 0.30 @
= 0.050 - --023
0.1 0.25 - : “8
0o 0207/ 0.025 - .04
0.00 0.25 0.50 0.75 1.00 0 200K 400K 600K 0 200K 400K 600K 0 200K 400K 600K
CS threshold T steps steps steps
(a) (b) T=0.25 (c) T=0.75 (d)



EMPIRICAL RESULTS

m Algorithms: TD3 and SAC

m Environments: Mujoco

m Implementation: Authors’ official
implementations e Walr2a

m Hyper parameters: Adjust only the
learning rate

m Evaluation: 5 different seeds il chesil .
Comparing different Hypernetwork configuration with TD3
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EMPIRICAL RESULTS

We compare the Hypernetwork model to several baselines:
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m primary: ResNet with 9M parameters.

m dynamic: 1 hidden layer, 256 neurons.

MLP-Standard: 2 hidden layers, 256 neurons.

MLP-Large: 2 hidden layers, 2900 neurons (same
parameter size 9M).

MLP-Small: 1 hidden layer, 256 neurons (same
dynamic architecture).

ResNet-Features: state features generated by the
Primary (same primary and dynamic
architectures).

Deep-ResNet: 35 Residual Blocks, half parameter
size 2x Slower.

Q-D2RL: Deep Dense model for the Q-function
(Sinha et al., 2020).



EMPIRICAL RESULTS

We compare the Hypernetwork model to several baselines:
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RecompPoSING THE PoLicy IN META-RL

Background: Meta-RL

m Distribution of different tasks p(7)

m Objective: Learning a meta-policy that should generalize over tasks.
m Methods:
> PEARL (Rakelly et al., 2019) Learned context ¢ = g, (z|c”?) based on history 7(als, c)

Locari(0,v) = E7 [Eq, (z1cm [L206™(0,v) + D (4w (21™)[p(2))]] ©)

> MAML (Finn et al., 2017) Policy adjusts its weights, no explicit context

)
Vd) Jmaml (¢) = E{TiNP(T)} Z Ai,tvaﬁ IOg T, (a't|st) (7)
i =0

¢; is the adjusted weights for task i.
» In practice, often we have access to an Oracle-Context that specify the task.




RecompPoSING THE PoLicy IN META-RL

Meta-Policy Meta-Q)-function

m Context as a meta-variable m A context is added also to the
Q-function’s model

Qﬂ—(& a, C) = QZ(S;H) (a7 C) (9)

qu(a’S, C) = Tw(c;p) (CL|S) (8)

m The primary generates a different policy
for each task. m The context gradient backpropagates
through the dynamic network.
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ReEDUCING THE GRADIENT VARIANCE

m MAML objective with MLP
A Vaome(s,c;
Vol (9) = Ty, Tier; disTarpies?
m MAML objective with Hypernetwork
1 Vwﬂ’w Cy ( )

Ved(9) =37, Vow(ci) - Y oger; As sﬁﬂ(;)

m The state-dependent part of the gradients V., 7, (., (s) is averaged over the task
distribution for each task.

The task dependent gradients of the primary weights V4w(c;) are averaged over the
task distribution.

m The disentanglement reduces the gradient noise and should translate to more accurate
learning steps.




ReEDUCING THE GRADIENT VARIANCE

m We trained meta-policies based on context-MAML:

1. MLP
2. Hypernetwork

m We estimated the gradient noise by constructing 50 different uncorrelated gradients and

evaluating the updated policy’s perfor
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m The variance of the Hypernetwork model is significantly lower than the MLP model

across all tasks and environments



EMPIRICAL RESULTS
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EMPIRICAL RESULTS

Out-Of-Distribution Generalization
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CONCLUSIONS

m The unique nature of the RL setting requires unconventional models.

» Unlike supervised tasks, we care only about the gradient accuracy of our Q-function model.
» The network needs to model the inherent state-action interaction and context-state

interaction in Meta-RL.

m Advantages over MLP models
P Better estimation of the Q-function gradient which is required to train actor-critic
algorithms.
» Reduces the gradient variance in Meta-RL.
» Outperform in final reward and efficiency.




Thank You

Code:
https://github.com/keynans/HypeRL
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https://github.com/keynans/HypeRL

