
Recomposing the Reinforcement Learning
Building Blocks with Hypernetworks

Elad Sarafian*, Shai Keynan* and Sarit Kraus

Bar-Ilan University

Overview

Hypernetwork model

Dynamic net

Hidden
layer Outputbase

variable

meta variable

Prim
ary netLinear

layer

Dynamic
weights

Block

Head Linear

+

ReLU

biasgainweights

Linear

ReLU

Head

R
eLU

Res Block

Linear

Res Block

Res Block

Block 512

Block 1024

Head

Block 256

O
utput
layer

Qss

q

action

wstate

(2)

(a) SA-Hyper (Q-net)

f

action

w

state

context

(b) Meta-Policy

(a) SAC (b) TD3

(c) MAML (d) PEAL

1 20

Motivation: The role of neural networks in the RL Renaissance

The Reinforcement Learning Renaissance is a�ributed to the integration with Deep Neural
Networks.

(a) DQN (2013) (b) AlphaZero (2018) (c) AlphaStar (2019)

So why State-Of-The-Art Deep RL papers still develop their algorithms on old-fashioned
neural-network architectures?

Neural-network architecture choices for reinforcement learning remain relatively under-explored
(Sinha et al. 2020).

2 20

Motivation: Actor-Critic methods

A reminder: the Q-function and the RL objective

Find a policy that “maximizes" the Q-function over its state distribution

π∗ = arg max
π

Es∼dπ
[
Ea∼π(·|s) [Qπ(s, a)]

]
(1)

Where

Qπ(s, a) = E

[∞∑
t=0

γtR(st, at)

∣∣∣∣∣at ∼ π(·|st), s0 = s, a0 = a

]
. (2)

SOTA o�-policy RL algorithms estimates the Q-function with a neural model.

Estimating the Q-function is not the goal of the algorithm, rather maximizing it.

Its input is elements from the Cartesian product of the state and action domains.

3 20

Motivation: Learning the Q-function

A reminder: optimizing the policy with the Q-function estimation

A stochastic policy with neural-network based parameterization is

πφ(a|s) = µφ(ε|s)s.t.ε ∼ pε, (3)

To optimize πφ we apply gradient ascent steps in the action gradient direction of the
Q-function

φ← φ+ ηE{s∼Dε∼pε}
[∇φµφ(ε|s)∇aQπθ (s, µφ(ε|s))] (4)

To optimize π we need to find the Q-function derivative with respect to the action input.

We do not directly learn∇aQπ .

Is∇aQπθ a su�icient approximation to∇aQπ when Qπ is approximated with a neural
model Qπθ ?

4 20

Motivation: the need for accurate gradient estimation

Proposition 1 rephrased

Under su�icient conditions, be�er gradient approximation allows larger policy
optimization step.

If there exists a gradient estimation g(s, a) and 0 < α < 1 s.t.

‖∇φ · g −∇φ · ∇aQπ‖ ≤ α‖∇φ · ∇aQπ‖ (5)

then the ascent step φ′ ← φ+ η∇φ · g with η ≤ 1
k̃

1−α
(1+α)2

guarantees a positive empirical
advantage policy.

To summarize, we wish to find a neural model for the Q-function s.t.

It is suited for processing inputs in the form (s, a), where s serves as a context.

It has good gradient model with respect to the input a.

5 20

Recomposing the Q-function with Hypernetworks

Hypernetwork is an architecture designed to
process a tuple (x, z) and output a value y.

A primary network wθ : Z → Rnw
produces weights.

A dynamic network fwθ(z) : X → Y
outputs the prediction.

z is termed a context or meta variable.

x is termed the base variable.

Dynamic net

Hidden
layer Outputbase

variable

meta variable

Prim
ary netLinear

layer

Dynamic
weights

Block

Head Linear

+

ReLU

biasgainweights

Linear

ReLU

Head

R
eLU

Res Block

Linear

Res Block

Res Block

Block 512

Block 1024

Head

Block 256

O
utput
layer

6 20

Recomposing the Q-function with Hypernetworks

Consider three alternative models:
1. MLP network

I States and actions are concatenated.

2. State-Action Hypernetwork (SA-Hyper)
I State is a meta-variable.

3. Action-State Hypernetwork (AS-Hyper)
I Action is as meta-variable.

Q

q

action state
(1)

Qss

q

action

wstate

(2)

Qas

q

state

waction

(3)

7 20

Gradient Analysis

MLP

∇aQπθ (s, a) = W aΛ1(s, a)

(
L−1∏
l=2

W lΛl(s, a)

)
WL

Function of the state only via the diagonal elements - active neurons map.

AS-Hyper
∇aQπθ (s, a) = ∇aw(a)∇wfw(s)

nw � na leads to a large null-space.

SA-Hyper

∇aQπθ (s, a) = W 1(s)Λ1(s, a)

(
L−1∏
l=2

W l(s)Λl(s, a)

)
WL(s)

W l(s) enables higher expressiveness of the gradient.

8 20

Empirical Gradient Analysis

Practically, due to the Temporal-Di�erence (TD) learning bias we cannot hope to
reconstruct the true Q-function scale.

Instead, we use the Cosine Similarity (CS) as a surrogate for measuring the gradient
accuracy.

Empirically low Cosine-Similarity is expected (Ilyas et al., 2019).

0.00 0.25 0.50 0.75 1.00
CS threshold

 (a)

0.0

0.1

0.2

0.3

0.4

0.5

%
 o

f s
ta

te
s

SA-Hyper(Ours)
MLP
AS-Hyper

0 200K 400K 600K
steps

 (b) = 0.25

0.20

0.25

0.30

0.35

0.40

0 200K 400K 600K
steps

 (c) = 0.75

0.025

0.050

0.075

0.100

0.125

0 200K 400K 600K
steps
 (d)

0.4

0.2

0.0

0.2

0.4

Co
sin

e-
Si

m
ila

rit
y

9 20

Empirical Results

Algorithms: TD3 and SAC

Environments: Mujoco

Implementation: Authors’ o�icial
implementations

Hyper parameters: Adjust only the
learning rate

Evaluation: 5 di�erent seeds
Comparing di�erent Hypernetwork configuration with TD3

10 20

Empirical Results

We compare the Hypernetwork model to several baselines:

Dynamic net

Hidden
layer Outputbase

variable

meta variable

Prim
ary netLinear

layer

Dynamic
weights

Block

Head Linear

+

ReLU

biasgainweights

Linear

ReLU

Head

R
eLU

Res Block

Linear

Res Block

Res Block

Block 512

Block 1024

Head

Block 256

O
utput
layer

primary: ResNet with 9M parameters.

dynamic: 1 hidden layer, 256 neurons.

MLP-Standard: 2 hidden layers, 256 neurons.

MLP-Large: 2 hidden layers, 2900 neurons (same
parameter size 9M).

MLP-Small: 1 hidden layer, 256 neurons (same
dynamic architecture).

ResNet-Features: state features generated by the
Primary (same primary and dynamic
architectures).

Deep-ResNet: 35 Residual Blocks, half parameter
size 2x Slower.

Q-D2RL: Deep Dense model for the Q-function
(Sinha et al., 2020).

11 20

Empirical Results

We compare the Hypernetwork model to several baselines:

Dynamic net

Hidden
layer Outputbase

variable

meta variable

Prim
ary netLinear

layer

Dynamic
weights

Block

Head Linear

+

ReLU

biasgainweights

Linear

ReLU

Head

R
eLU

Res Block

Linear

Res Block

Res Block

Block 512

Block 1024

Head

Block 256

O
utput
layer

primary: ResNet with 9M parameters.

dynamic: 1 hidden layer, 256 neurons.

12 20

Recomposing the Policy in Meta-RL

Background: Meta-RL

Distribution of di�erent tasks p(T)

Objective: Learning a meta-policy that should generalize over tasks.
Methods:
I PEARL (Rakelly et al., 2019) Learned context c = qν(z|cTi) based on history π(a|s, c)

Lcriticpearl (θ, ν) = ET
[
Eqν(z|cTi)

[
Lcriticsac (θ, ν) +DKL

(
qν(z|cTi)

∣∣p(z))]] (6)

I MAML (Finn et al., 2017) Policy adjusts its weights, no explicit context

∇φJmaml(φ) = E{Ti∼p(T)
πφi
}

[∞∑
t=0

Âi,t∇φ log πφi(at|st)

]
(7)

φi is the adjusted weights for task i.
I In practice, o�en we have access to an Oracle-Context that specify the task.

13 20

Recomposing the Policy in Meta-RL

Meta-Policy

Context as a meta-variable

πφ(a|s, c) = πw(c;φ)(a|s) (8)

The primary generates a di�erent policy
for each task.

f

action

w

state

context

Meta-Q-function

A context is added also to the
Q-function’s model

Qπ(s, a, c) ' Qπw(s;θ)(a, c) (9)

The context gradient backpropagates
through the dynamic network.

Q

action

w

context

state

q

14 20

Reducing the Gradient Variance

MAML objective with MLP

∇φJ(φ) =
∑
Ti
∑

s∈Ti Âi,s
∇φπφ(s,ci)
πφ(s,ci)

MAML objective with Hypernetwork

∇φJ(φ) =
∑
Ti ∇φw(ci) ·

∑
s∈Ti Âi,s

∇wπw(ci)
(s)

πw(ci)
(s)

The state-dependent part of the gradients∇wπw(ci)(s) is averaged over the task
distribution for each task.

The task dependent gradients of the primary weights∇φw(ci) are averaged over the
task distribution.

The disentanglement reduces the gradient noise and should translate to more accurate
learning steps.

15 20

Reducing the Gradient Variance

We trained meta-policies based on context-MAML:
1. MLP
2. Hypernetwork

We estimated the gradient noise by constructing 50 di�erent uncorrelated gradients and
evaluating the updated policy’s performance.

The variance of the Hypernetwork model is significantly lower than the MLP model
across all tasks and environments

16 20

Empirical Results

Algorithms: MAML, PEARL

Hyper parameters:
Adjust only the learning rate

Implementation:
Authors’ o�icial implementations

Evaluation: 5 di�erent seeds
Tasks:
I Reach a distant point
I Target velocity
I OOD- Out of Distribution

17 20

Empirical Results

Out-Of-Distribution Generalization

Eliminating the adaptation step during
training

0 50 100 150 200 250 300 350 400

350

300

250

200

150

re
tu

rn

Half-Cheetah-Vel

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

Half-Cheetah-Fwd-Back

0 50 100 150 200 250 300 350 400
iteration

600

550

500

450

400

350

300
Half-Cheetah-Vel-Medium(OOD)

0 50 100 150 200 250 300 350 400
iteration

60

40

20

0

20

40

re
tu

rn

Ant-Vel

0 50 100 150 200 250 300 350 400
iteration

0

10

20

30

40

50

60

70

Ant-Fwd-Back

Vanilla MAML
Contex MAML
Hyper MAML(Ours)
Multi Task Hyper MAML (Ours)

18 20

Conclusions

The unique nature of the RL se�ing requires unconventional models.
I Unlike supervised tasks, we care only about the gradient accuracy of our Q-function model.
I The network needs to model the inherent state-action interaction and context-state

interaction in Meta-RL.

Advantages over MLP models
I Be�er estimation of the Q-function gradient which is required to train actor-critic

algorithms.
I Reduces the gradient variance in Meta-RL.
I Outperform in final reward and e�iciency.

19 20

Thank You
Code:

https://github.com/keynans/HypeRL

20 / 20

https://github.com/keynans/HypeRL

