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Motivation
Given dataset D = ∪pj=1Dj = {(xi, yi)Ni=1} with p disjoint subsets {Dj}pj=1,
y = yD = [y1, . . . , y|D|]

T : data labels, KN : kernel matrix, |D|: the number of data in D.

Kernel Ridge Regression (KRR)

f̂D,λ(x) =

|D|∑
i=1

α̂iK(xi, x) with α̂ = (KN + λ|D|I)−1y, (1)

are deduced from the square loss problem

f̂D,λ = arg min
f∈H

1

|D|

|D|∑
i=1

(f(xi)− yi)2 + λ‖f‖2H, λ > 0. (2)

Time complexity: O(|D|3),

Space complexity: O(|D|2).
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Contributions
In this paper, we study the statistical performance for distributed KRR with Nyström
(DKRR-NY) and with Nyström and PCG (DKRR-NY-PCG).

Procedure: KRR −→
{

KRR-NY

KRR-NY-PCG
−→

{
DKRR-NY −→ DKRR-NY-CM

DKRR-NY-PCG

⇓

1 Our theoretical analysis show that DKRR-NY and DKRR-NY-PCG achieve the same
optimal learning rates as the exact KRR requiring essentially O(|D|1.5) time and O(|D|)
memory with relaxing the restriction on the number of local processors p in expectation,
which exhibits the average effectiveness of multiple trials.

2 For showing the generalization performance in a single trial, we deduce the optimal
learning rates for DKRR-NY and DKRR-NY-PCG in probability.

3 We propose a novel algorithm DKRR-NY-CM based on DKRR-NY, which employs a
communication strategy to further improve the learning performance, whose effectiveness
of communications is validated in theoretical and experimental analysis.

Note:

DKRR-NY: distributed KRR with Nyström;

DKRR-NY-PCG: distributed KRR with Nyström and PCG;

DKRR-NY-CM: distributed KRR with Nyström and communication strategy.
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Introduction

KRR with Nyström (KRR-NY)
Consider a smaller hypothesis space Hm

Hm = {f |f =
m∑
i=1

αiK(x̃i, ·),α ∈ Rm}

of functions

f̃m,λ(x) =
m∑
i=1

α̃iK(x̃i, x), (3)

The corresponding minimizer over the space Hm is

α̃ = (KT
NmKNm + λ|D|Kmm︸ ︷︷ ︸

H

)†KT
Nmy︸ ︷︷ ︸
z

.
(4)

where {x̃1, . . . , x̃m} are Nyström centers sampled uniformly at random without replacement
from the training set.

Procedure: KRR −→
{

KRR-NY

KRR-NY-PCG
−→

{
DKRR-NY −→ DKRR-NY-CM

DKRR-NY-PCG
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To quickly compute α̃ in the above (Eq.(4)), preconditioning and conjugate gradient (PCG) is
introduced.

KRR with Nyström and PCG (KRR-NY-PCG)

PTHα̂ = PT z, with f̂m,λ(x) =
m∑
i=1

α̂iK(x̃i, x), (5)

where

α̂ is solved via t-step conjugate gradient algorithm,

P = 1√
|D|

T−1A−1,

T = chol(Kmm),

A = chol( 1
m
TTT + λI),

chol() represents the Cholesky decomposition.

Procedure: KRR −→
{

KRR-NY

KRR-NY-PCG
−→

{
DKRR-NY −→ DKRR-NY-CM

DKRR-NY-PCG
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Distributed KRR with Nyström (DKRR-NY) and with Nyström and PCG (DKRR-NY-PCG)

DKRR-NY-PCG

f̄0
D,m,t =

p∑
j=1

|Dj |
|D|

fDj ,m,t, (6)

where fDj ,m,t is the solver of KRR-NY-PCG in Eq.(5).
When t→∞, Eq.(6) is distributed KRR-NY (DKRR-NY), fDj ,m,t is rewritten as fDj ,m,λ.

Procedure: KRR −→
{

KRR-NY

KRR-NY-PCG
−→

{
DKRR-NY−→ DKRR-NY-CM

DKRR-NY-PCG
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Theoretical Analysis of DKRR-NY and DKRR-NY-PCG in Expectation

Theorem (DKRR-NY in Expectation)

Under basic Assumptions, let r ∈ [1/2, 1], γ ∈ (0, 1], λ = Ω(|D|−
1

2r+γ ), with probability 1− δ,
when p ≤ O(|D|

2r+γ−1
2r+γ ) and m ≥ O(|D|

1
2r+γ ), we have

E[E(f̄0
D,m,λ)]− E(fH) = O(|D|−

2r
2r+γ ).

Corollary (DKRR-NY-PCG in Expectation)

Under basic Assumptions, let r ∈ [1/2, 1], γ ∈ (0, 1], λ = Ω(|D|−
1

2r+γ ), with probability 1− δ,
when t ≥ O(log(|D|)), p ≤ O(|D|

2r+γ−1
2r+γ ), and m ≥ O(|D|

1
2r+γ ), we have

E[E(f̄0
D,m,t)]− E(fH) = O(|D|−

2r
2r+γ ).

NOTE:

O(N
− 2r

2r+γ ) is the optimal learning rate of KRR.
Under the basic setting (r = 1/2 and γ = 1), the upper bound of the number of local
processors p is enlarged from O(1) of previous work [Yin et al., 2020a] to our O(

√
|D|)

with the optimal learning rate.

Procedure: KRR −→
{

KRR-NY

KRR-NY-PCG
−→

{
DKRR-NY−→ DKRR-NY-CM

DKRR-NY-PCG
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Theoretical Analysis of DKRR-NY and DKRR-NY-PCG in Probability
For showing the generalization performance in a single trial, we deduce the learning rates for
DKRR-NY and DKRR-NY-PCG in probability.

Theorem (DKRR-NY in Probability)

Under basic Assumptions, let r ∈ [1/2, 1], γ ∈ (0, 1], λ = Ω(|D|−
1

2r+γ ), with probability 1− δ,
when p ≤ O(|D|

2r+γ−1
4r+2γ ) and m ≥ O(|D|

1
2r+γ ), we have ‖f̄0

D,m,λ − fH‖
2
ρ = O(|D|−

2r
2r+γ ).

Corollary (DKRR-NY-PCG in Probability)

Under basic Assumptions, let r ∈ [1/2, 1], γ ∈ (0, 1], λ = Ω(|D|−
1

2r+γ ), with probability 1− δ,
when t ≥ O(log(|D|)), p ≤ O(|D|

2r+γ−1
4r+2γ ), and m ≥ O(|D|

1
2r+γ ), we have

‖f̄0
D,m,t − fH‖

2
ρ = O(|D|−

2r
2r+γ ).

Note:
Since the error decomposition in probability is not easy to separate a distributed error to

control the number of local processors, the upper bound O(|D|
2r+γ−1
4r+2γ ) of p in probability

is stricter than O(|D|
2r+γ−1

2r+γ ) in expectation.

Procedure: KRR −→
{

KRR-NY

KRR-NY-PCG
−→

{
DKRR-NY−→ DKRR-NY-CM

DKRR-NY-PCG
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To further enlarge the number of local processors p, we present a novel communication strategy
for DKRR-NY (called DKRR-NY-CM).

DKRR-NY-CM

f̄ lD,m,λ = f̄ l−1
D,m,λ −

p∑
j=1

|Dj |
|D|

βl−1
j , l > 0

where
βl−1
j = (PmCnPm + λI)−1GD,m,λ(f̄ l−1

D,m,λ),

local gradient: GDj ,m,λ(f) = (PmCnPm + λI)f − 1√
|Dj |

PmS∗nyDj , and

global gradient: GD,m,λ(f) =
∑p
j=1

|Dj |
|D| GDj ,m,λ(f).

Note:

DKRR-NY-CM communicates the gradients instead of data between local processors,
which can protect the privacy of datasets in each local processor.

Procedure: KRR −→
{

KRR-NY

KRR-NY-PCG
−→

{
DKRR-NY −→ DKRR-NY-CM

DKRR-NY-PCG
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Theoretical Analysis of DKRR-NY-CM in Probability

Theorem (3DKRR-NY-CM in Probability)

Under basic Assumptions, let r ∈ [1/2, 1], γ ∈ (0, 1], λ = Ω(|D|−
1

2r+γ ), with probability 1− δ,

when p ≤ O(|D|
(2r+γ−1)(M+1)

(2r+γ)(M+2) ) and m ≥ O(|D|
1

2r+γ ), we have

‖f̄MD,m,λ − fH‖
2
ρ = O(|D|−

2r
2r+γ ).

Note:

DKRR-NY-CM enlarges the upper bound of p compared with DKRR-NY:

p ≤ O(|D|
2r+γ−1
4r+2γ ) —–> p ≤ O(|D|

(2r+γ−1)(M+1)
(2r+γ)(M+2) ).

The upper bound of p is monotonically increasing with the number of communications M ,
showing the power of communications.

Procedure: KRR −→
{

KRR-NY

KRR-NY-PCG
−→

{
DKRR-NY −→ DKRR-NY-CM

DKRR-NY-PCG
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Compared Methods

Table 1: Computational complexity of the approximation KRR with the optimal learning rate and λ = 1/
√
|D|.

“Comm” is communication complexity. d > 0, ∆1 =
(1−γ)γ

2
≥ 0, ∆2 = γ

2
> 0, and γ ∈ (0, 1].

Algorithms Time Space Comm p m Types

Nyström[Rudi et al., 2015] |D|2 |D|1.5 / / |D|0.5 In probability
Nyström-PCG[Rudi et al., 2017] |D|1.5 |D|1.5 / / |D|0.5 In probability
Random Features[Rudi et al., 2016]|D|2+2∆1 |D|1.5+∆1 / / |D|0.5+∆1In probability
DKRR-RF[Li et al., 2019] |D|1.5+2∆1+∆2|D|1+∆1+∆2 |D|0.5+∆1 |D|0.5−∆2 |D|0.5+∆1In expectation
DKRR-RF[Liu et al., 2021] |D|1.5+2∆1 |D|1+∆1 |D|0.5+∆1 |D|0.5 |D|0.5+∆1In expectation
DKRR-RF[Liu et al., 2021] |D|1.75+2∆1 |D|1.25+∆1 |D|0.5+∆1 |D|0.25 |D|0.5+∆1In probability

DKRR-RF-CM[Liu et al., 2021] |D|
3M+7
2M+4

+2∆1 |D|
2M+5
2M+4

+∆1M|D|0.5+∆1|D|
M+1

2(M+2)|D|0.5+∆1In probability
DKRR[Chang et al., 2017b] |D|2 |D| |D|0.5 |D|0.5 / In expectation
DKRR[Lin et al., 2020] |D|2.25 |D|1.5 |D|0.75 |D|0.25 / In probability

DKRR-CM[Lin et al., 2020] |D|
3(M+3)
2(M+2) |D|

M+3
M+2 Md|D| |D|

M+1
2(M+2)/ In probability

DKRR-NY-PCG[Yin et al., 2020a] |D|1.5 |D|1+∆2 |D|0.5 |D|0.5−∆2 |D|0.5 In expectation
DKRR-NY-PCG [This paper] |D|1.5 |D| |D|0.5 |D|0.5 |D|0.5 In expectation
DKRR-NY-PCG [This paper] |D|1.75 |D|1.25 |D|0.5 |D|0.25 |D|0.5 In probability
DKRR-NY [This paper] |D|1.5 |D| |D|0.5 |D|0.5 |D|0.5 In expectation
DKRR-NY [This paper] |D|1.75 |D|1.25 |D|0.5 |D|0.25 |D|0.5 In probability

DKRR-NY-CM [This paper] |D|
3M+7
2M+4 |D|

2M+5
2M+4 M|D|0.5 |D|

M+1
2(M+2)|D|0.5 In probability
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Simulation Experiment
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Figure 1: The mean square error on testing sampling with different partitions on
KRR, DKRR-NY, and our DKRR-NY-CM. The numbers 2, 4 and 8 represent the
number of communications.
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Thank You for Listening
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